K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

cách max dài và hại não

cần C/m : \(\Sigma\sqrt{a^2-a+1}\ge\Sigma a\) \(\Leftrightarrow3+2\sqrt{\left(a^2-a+1\right)\left(b^2-b+1\right)}\ge2\Sigma ab+\Sigma a\)( * )

Ta có \(\left(a^2-a+1\right)\left(b^2-b+1\right)=\left(\frac{3}{4}\left(a-1\right)^2+\frac{1}{4}\left(a+1\right)^2\right)\left(\frac{3}{4}\left(b-1\right)^2+\frac{1}{4}\left(b+1\right)^2\right)\)

\(\ge\frac{3}{4}\left|a-1\right|\left|b-1\right|+\frac{1}{4}\left(a+1\right)\left(b+1\right)\)( BĐT Bu-nhi-a-cốp-ski ) 

\(\ge\frac{3}{4}\left(a-1\right)\left(b-1\right)+\frac{1}{4}\left(a+1\right)\left(b+1\right)=\frac{-1}{2}ab+a+b-\frac{1}{2}\)

Do đó : VT ( * ) \(\ge4\Sigma a-\Sigma ab\). BĐT đúng nếu : \(\Sigma a\ge\Sigma ab\)

Điều này đúng khi trong a,b,c có 1 số \(\le\)1 và 1 số khác  \(\ge\)1

Ta xét trong a,b,c có 2 số \(\ge\)1 , giả sử là b và c  . Khi đó BĐT đã cho trở thành : 

\(\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{1-b}{\sqrt{b^2-b+1}+b}+\frac{1-c}{\sqrt{c^2-c+1}+c}\ge0\)( ** )

b,c \(\ge\)\(\Rightarrow1-b,1-c\le0\)

Ta có : \(\sqrt{b^2-b+1}\ge\frac{b+1}{2}\)và \(\sqrt{c^2-c+1}\ge\frac{c+1}{2}\)

Do đó : VT ( ** ) \(\ge\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{2\left(1-b\right)}{3b+1}+\frac{2\left(1-c\right)}{3c+1}\)

\(=\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{8}{3}\left(\frac{1}{3b+1}+\frac{1}{3c+1}\right)-\frac{4}{3}\)

bổ đề  \(\sqrt{bc}\ge1\)thì \(\frac{1}{3b+1}+\frac{1}{3c+1}\ge\frac{2}{3\sqrt{bc}+1}\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\left(9\sqrt{bc}-1\right)\ge0\)

vì vậy : VT (**) \(\ge\frac{1-a}{\sqrt{a^2-a+1}+a}+\frac{16}{3\left(3\sqrt{bc}+1\right)}-\frac{4}{3}\)

\(=\sqrt{a^2-a+1}-a+\frac{16\sqrt{a}}{3\left(3+\sqrt{a}\right)}-\frac{4}{3}\)

đặt \(\sqrt{a}=t\le1\), cần chứng minh : \(\sqrt{t^4-t^2+1}-t^2+\frac{16t}{3\left(3+t\right)}\ge\frac{4}{3}\)( BĐT đúng nếu t > 0,28 )

Xét \(a\le t^2=0,0784\Rightarrow a\in\left[0;0,0784\right]\)

Lại có :  \(\sqrt{b^2-b+1}>b-\frac{1}{2};\sqrt{c^2-c+1}>c-\frac{1}{2}\)

Do đó : \(\frac{1-b}{\sqrt{b^2-b+1}+b}+\frac{1-c}{\sqrt{c^2-c+1}+c}\ge\frac{1-b}{2b-\frac{1}{2}}+\frac{1-c}{2c-\frac{1}{2}}\)

\(\frac{1}{2}\left[\frac{\frac{3}{2}-\left(2b-\frac{1}{2}\right)}{2b-\frac{1}{2}}+\frac{\frac{3}{2}-\left(2c-\frac{1}{2}\right)}{2c-\frac{1}{2}}\right]=\frac{3}{4}\left(\frac{1}{2b-\frac{1}{2}}+\frac{1}{2c-\frac{1}{2}}\right)-1\)

\(\ge\frac{3}{\frac{1}{\sqrt{bc}}-1}=\frac{3\sqrt{a}}{4-\sqrt{a}}-1\)

do đó : VT ( ** ) \(\ge\sqrt{t^4-t^2+1}-t^2+\frac{3t}{4-t}-1\)\(\ge0\)

\(\Leftrightarrow3t\left(\frac{1}{4-t}+\frac{t}{\sqrt{t^4-t^2+1}+t^2+1}\right)\ge0\)

\(\Leftrightarrow3t.\frac{\sqrt{t^4-t^2+1}+2t^2-4t+1}{\left(4-t\right)\left(\sqrt{t^4-t^2+1}+t^2+1\right)}\ge0\)

BĐT cuối đúng \(\forall\)t < 0,25 < 0,28

\(\Rightarrow\)đpcm

P/s : bài này mình tham khảo nha. cách rất dài, khó

16 tháng 4 2021

a, Vì A(1;-3) năm trên đường thẳng (d) khi tọa độ điểm B thỏa mãn phương trình đường thẳng (d) 

Thay x = 1 ; y = -3 vào (d) phương trình tương đương 

\(-3=5-3m+1\Leftrightarrow4-3x=-3\Leftrightarrow-3x=-7\Leftrightarrow x=\frac{7}{3}\)

b ; c thiếu đề 

23 tháng 4 2021

Bài 2 : 

Vì y = x + 5 có tung độ là 2 

=> y = 2 + 5 = 7 

Vậy y = ( 2m - 5 )x - 5m đi qua đường thẳng y = x + 5 A( 2 ; 7 ) 

Thay x = 2 ; y = 7 vào y = ( 2m - 5 )x - 5m ta được : 

\(7=\left(2m-5\right)2-5m\Leftrightarrow4m-10-5m=7\Leftrightarrow-m=17\Leftrightarrow m=-17\)

10 tháng 8 2019

Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)

*Chứng minh an là số tự nhiên.

Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:

\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n =  k + 1 hay:

\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)

\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)

Vậy ta có đpcm. 

Còn lại em chưa nghĩ ra

10 tháng 8 2019

Cái bài ban nãy sửa a, b thành x và y nha! Không thôi nó trùng với đề bài. Tại quen tay nên em đánh luôn a, b

10 tháng 8 2019

Không mất tính tổng quát.

g/s : \(x\ge y\ge z\)\(\ge1\)

Theo bài ra ta có: \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)⋮xyz\)

=> \(\left(xy^2z+yz+xy+1\right)\left(zx+1\right)⋮xyz\)

=> tồn tại số nguyên dương k sao cho:  \(xy+yz+zx+1=k.xyz\)

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=k\)

=> \(k\le1+1+1+1=4\)(1)

TH1: k = 4  khi đó dấu "=" của bất đẳng thức (1) xảy ra khi và chỉ khi x=y=z=1 (  tm)

TH2: k=3

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=3\)

=>\(3\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}+\frac{1}{z^3}\)

=> \(3\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\)

=> \(2\le\frac{1}{y}+\frac{1}{y}+\frac{1}{y^2}=\frac{2}{y}+\frac{1}{y^2}\)=> y=1

Với z=1; y=1 => \(\frac{1}{x}+\frac{1}{x}=1\Rightarrow x=2\)

Vậy x=2, y=z=1 ( thử vào thỏa mãn)

TH3: k=2

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{zyx}=2\)

=> \(2\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\)

=> \(1\le\frac{2}{y}+\frac{1}{y^2}\)=> y=2 hoặc y=1

Với y=1 => \(\frac{1}{x}+\frac{1}{x}=0\left(loai\right)\)

Với y=2 => \(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\Rightarrow x=3\)

Vậy x=3; y=2; z=1 ( thử vào thỏa mãn)

TH4: K=1

=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xyz}=1\)

=> \(1\le\frac{3}{z}+\frac{1}{z^3}\)=> z=1 hoặc z=2 hoặc z=3

Với z=1 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=0\)loại

Với \(z=2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

=> \(\frac{1}{2}\le\frac{2}{y}+\frac{1}{2y^2}\)=> y=1 (loại), y=2 (loại ); y=3 => x=7 ; y=4 => x= 9/2(loại); y>5 loại

Với z =3   => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3}+\frac{1}{3xy}=1\)=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{3xy}=\frac{2}{3}\)

=> \(\frac{2}{3}\le\frac{2}{y}+\frac{1}{3y^2}\)=> y=1 ( loại ), y=2 => x=7 (tm) , y=3 => x=10/3 (loại); y>4 ( loại)

TH này x=7; y=2; z=1 ( thử vào ko thỏa mãn) hoặc x=7; y=3 ; z=1 ( thử vào ko thỏa mãn)

Vậy: (x; y; z)  là bộ ba số (1; 1; 1), (3; 2; 1); (2; 1;1 ) và các hoán vị của chúng

Ps: Cầu một cách ngắn gọn hơn! Thanks

9 tháng 8 2019

ĐK: x>= -1/3

Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)

<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)

Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)

Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi: 

\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk

Vậy x=1

12 tháng 8 2019

Ta có thể dùng cô si chăng?

ĐK: \(x\ge-\frac{1}{3}\)

\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)

\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)

Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:

\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)

Vậy...

Is it true??

7 tháng 8 2019

Bạn ơi đề bài có điều kiện a, b, c không vậy. Hay là a, b, c bất kì?

7 tháng 8 2019

dạ a,b,c>0 ạ.em quên mất 

6 tháng 8 2019

A B C M D K O

1) Vì \(\Delta\)ABC đều nên AB = BC = CA => A là điểm chính giữa cung lớn BC của (O)

=> ^BMA = ^CMA (=600). Kết hợp với ^MCB = ^MAB suy ra \(\Delta\)MDC ~ \(\Delta\)MBA (g.g)

=> \(MB.MC=MD.MA\) => \(MD=\frac{MB.MC}{MA}\le\frac{\left(MB+MC\right)^2}{4MA}\)

Mặt khác, theo ĐL Ptolemy: \(MB.AC+MC.AB=AM.BC\)=> \(MB+MC=MA\)(BC=CA=AB)

Do đó \(MD\le\frac{MA^2}{4MA}=\frac{MA}{4}\le\frac{2R}{4}=\frac{R}{2}\)(Vì AM là một dây của (O))

Dấu "=" xảy ra khi và chỉ khi AM là đường kính của (O). Vậy Max MD = R/2.

2) Ta thấy ^CMA = 600 = ^CAB. Từ đây \(\Delta\)ACM ~ \(\Delta\)KCA (g.g)

=> CA2 = CM.CK hay CB2 = CM.CK => \(\Delta\)CBM ~ \(\Delta\)CKB (c.g.c)

=> ^CBM = ^BKM => BC là tiếp tuyến của đường tròn (BKM) (đpcm).

7 tháng 8 2019

Từ giả thiết suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)  (*) (Vì a,b,c > 0)

Áp dụng BĐT Cauchy ta có:

\(\frac{1}{\sqrt{a^3+b}}\le\frac{1}{\sqrt{2}.\sqrt[4]{a^3b}}=\frac{1}{\sqrt{2}}.\sqrt[4]{\frac{1}{a}.\frac{1}{a}.\frac{1}{a}.\frac{1}{b}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{a}+\frac{1}{b}\right)\)

Đánh giá tương tự: \(\frac{1}{\sqrt{b^3+c}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{b}+\frac{1}{c}\right);\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}\left(\frac{3}{c}+\frac{1}{a}\right)\)

Từ đó, kết hợp với (*) suy ra:

 \(\frac{1}{\sqrt{a^3+b}}+\frac{1}{\sqrt{b^3+c}}+\frac{1}{\sqrt{c^3+a}}\le\frac{1}{4\sqrt{2}}.4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3\sqrt{2}}{2}\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1.\)

kết bạn với mình không

6 tháng 8 2019

f(x) có nghiệm 

=> \(b^2\ge4c\)

\(f\left(2\right)=4+2b+c=\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+\frac{b}{2}+c+1+1+1+1\)

                                        \(\ge9\sqrt[9]{\frac{1}{16}b^4c}\ge9\sqrt[9]{\frac{1}{16}.\left(4c\right)^2.c}=9\sqrt[3]{c}\)(ĐPCM)

Dấu bằng xảy ra khi b=2,c=1

6 tháng 8 2019

A B C H D E F

Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác ABC.

+) \(\Delta AHE~\Delta ACD\)( vì ^HAE =^CAD, ^HEA=^CDA )

=> \(\frac{HA}{CA}=\frac{EA}{AD}\)=> \(\frac{HA}{CA}.\frac{HB}{BC}=\frac{EA}{CA}.\frac{HB}{BC}=\frac{2.EA.HB}{2.CA.BC}=\frac{S_{\Delta AHB}}{S_{ABC}}\)(1)

+) \(\Delta CHD~\Delta CBF\)( vì ^DCH=^FCB, ^CDH=^CFB )

=> \(\frac{CH}{CB}=\frac{CD}{CF}\)=> \(\frac{CH}{CB}.\frac{AH}{AB}=\frac{CD.AH}{CF.AB}=\frac{S_{AHC}}{S_{ABC}}\)(2)

+) \(\Delta ABE~\Delta HBF\)

=> \(\frac{HB}{AB}=\frac{BF}{BE}\Rightarrow\frac{HB}{AB}.\frac{HC}{AC}=\frac{BF.HC}{BE.AC}=\frac{S_{BHC}}{S_{ABC}}\)(3)

Từ (1) ; (2) ; (3) => \(\frac{HA}{CA}.\frac{HB}{BC}+\frac{CH}{CB}.\frac{AH}{AB}+\frac{HB}{AB}.\frac{HC}{AC}=\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}=1\)

=> \(\frac{HA}{BC}.\frac{HB}{AC}+\frac{HB}{AC}.\frac{HC}{AB}+\frac{HC}{AB}.\frac{HA}{BC}=1\)

Đặt: \(\frac{HA}{BC}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\); x, y, z>0

Ta có: \(xy+yz+zx=1\)

=> \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\)

=> \(x+y+z\ge\sqrt{3}\)

"=" xảy ra khi và chỉ khi x=y=z

Vậy : \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)

"=" xảy ra <=> \(\frac{HA}{BC}=\frac{HB}{AC}=\frac{HC}{AB}\)