K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

Áp dụng định lý Pi-ta-go đó 

21 tháng 11 2016

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ 
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
            \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
            \(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
             \(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
        \(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu  - nhi - a  ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
                                                                                   \(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
                     \(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
                     \(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
                     \(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
                            \(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
                             \(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

20 tháng 11 2016

A B C D E F M P Q I K

a/ 

Vì ABCD là hình bình hành nên AB // CD => ABCD cũng là hình thang.

Ta có E và F lần lượt là trung điểm các cạnh AD và BC nên EF là đường trung bình 

của hình thang ABCD => EF // AB (1)

Lại có AE // BF (2) . Từ (1) và (2) suy ra ABFE là hình bình hành (dhnb)

b/ Xét tứ giác DEBC có \(\hept{\begin{cases}DE=BF\\DE\text{//}BF\end{cases}}\) => DEBF là hình bình hành => BE // DF

Xét tam giác BCP : \(\hept{\begin{cases}BF=FC\\FQ\text{//}BP\end{cases}}\) => QF là đường trung bình => CQ = QP (3)

Tương tự với tam giác ADQ : PE là đường trung bình => AP = PQ (4)

Từ (3) và (4) => AP = PQ = QC

c/ 

Ta có : \(\hept{\begin{cases}IE=EM\\AE=ED\end{cases}}\) => IAMD là hình bình hành => IA // DM hay IA // CD (5)

Tương tự : \(\hept{\begin{cases}BF=FC\\MF=FK\end{cases}}\) => BKCM là hình bình hành => BK // CD (6)

Lại có AB // CD (7)

Từ (5) , (6) , (7) kết hợp cùng với tiên đề Ơ-clit ta được đpcm.

d/  Vì IAMD và BKCM là các hình bình hành (chứng minh ở câu c) 

nên ta có AI = DM , BK = CM

=> AI + BK = DM + CM = CD (không đổi)

Vậy khi M di chuyển trên cạnh CD thì AI + BK không đổi.

20 tháng 11 2016

khó đấy bạn !

7 tháng 11 2017

Dùng hình của bạn Ngọc nhé

a) \(\Delta ABC\)đều có \(\widehat{BAC}=60^0;\)đường cao AD cũng là phân giác và trực tâm H cũng là trọng tâm

I là trung điểm của cạnh huyền chung AM của các tam giác vuông \(\Delta AEM,\Delta AFM,\Delta ADM\)nên \(IA=IE=ID=IF=\frac{AM}{2}\)(1)

\(\widehat{EIM}\)là góc ngoài của \(\Delta AIE\)cân tại I nên \(\widehat{EIM}=2\widehat{BAM}\). Tương tự, \(\widehat{MID}=2\widehat{MAD};\widehat{MIF}=2\widehat{MAC}\)

\(\widehat{EID}=\widehat{EIM}+\widehat{MID}=2\left(\widehat{BAM}+\widehat{MAD}\right)=2\widehat{BAD}=\widehat{BAC}=60^0\)

\(\widehat{EIF}=\widehat{EIM}+\widehat{MIF}=2\left(\widehat{BAM}+\widehat{MAC}\right)=2.60^0=120^0\)

\(\Rightarrow\widehat{DIF}=120^0-60^0=60^0\)

\(\Delta EDI\)cân tại I có \(\widehat{EID}=60^0\)nên là tam giác đều, suy ra EI = ED (2)

\(\Delta FDI\)cân tại I có \(\widehat{DIF}=60^0\)nên là tam giác đều, suy ra FI = FD (3)

(1),(2),(3) => IE = ED = DF = IF => DEIF là hình thoi

b) Gọi P là trung điểm AH thì \(AP=PH=\frac{AH}{2}=HD\)

Cho ID cắt EF tại K thì K là trung điểm ID (tính chất hình thoi ABCD)

\(\Delta AMH\)có IP là đường trung bình nên IP // MH (4)

\(\Delta DPI\)có KH là đường trung bình nên IP // KH (5)

(4),(5) => M,K,H thẳng hàng. Vậy MH, ID, EF đồng quy tại K

17 tháng 11 2016

A B C D E F H I M O

17 tháng 11 2016

Ta có

\(\left(x^2+y^2+z^2\right)^2-2\left(x^4+y^4+z^4\right)\)

\(=2x^2y^2+2y^2z^2+2z^2x^2-x^4-y^4-z^4\)

\(=\left(z^2x^2+2z^2xy+z^2y^2\right)+\left(z^2x^2-2z^2xy+z^2y^2\right)+\left(-x^4+2x^2y^2-y^4\right)-z^4\)

\(=z^2\left(x+y\right)^2+z^2\left(x-y\right)^2-\left(x^2-y^2\right)^2-z^4\)

\(=z^2\left(\left(x+y\right)^2-z^2\right)-\left(x-y\right)^2\left(\left(x+y\right)^2-z^2\right)\)

\(=\left(\left(x+y\right)^2-z^2\right)\left(z^2-\left(x-y\right)^2\right)\)

\(=\left(x+y+z\right)\left(x+y-z\right)\left(z-x+y\right)\left(z+x-y\right)=0\)

Vậy \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)

17 tháng 11 2016

khó vậy

17 tháng 11 2016

A B C D O H K I O' d

Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành. Từ O hạ đường cao OO' vuông góc với d tại O'.

Ta có \(\hept{\begin{cases}OA=OC\\OO'\text{//}AH\end{cases}\Rightarrow}\) OO' là đường trung bình của tam giác AHC => AH = 2OO'                        (1)

Xét tứ giác BDKI có : \(\hept{\begin{cases}DK\text{//}OO'\text{//}BI\\OB=OD\end{cases}\Rightarrow}\) OO' là đường trung bình của hình thang BDKI

=> DK + BI = 2OO'                                                                                                                                (2)

Từ (1) và (2) suy ra AH = BI + DK.

Bạn sửa lại đề bài cho đúng nhé!

17 tháng 11 2016

A B C D (d) H I K E F

Gọi F là giao điểm của AH và BC. Kẽ DF vuông góc với AH

Ta có \(\widehat{AEH}=\widehat{AHC}=\widehat{DKC}=90\)

\(\Rightarrow DEHK\)là hình chữ nhật

\(\Rightarrow HE=DK\left(1\right)\)

Ta có \(\widehat{DAF}=\widehat{AFB\:}\)(AD // BC)

\(\widehat{IBF}=\widehat{AFB\:}\)(BI // AH)

\(\Rightarrow\widehat{DAF}=\widehat{IBF}\)

\(\widehat{AFD}=\widehat{BIC}=90\)

AD = BC

\(\Rightarrow\Delta BIC=\Delta AED\)

\(\Rightarrow BI=AE\left(2\right)\)

Từ (1) và (2) => AE + HE = AH = BI + DK

PS: Phải là chứng minh AH = BI + DK mới đúng nha

17 tháng 11 2016

A B M C D E F H G P Q

EF và GH kéo dài lần lượt cắt AB tại P và Q => P,Q là trung điểm của AM và MB (bạn tự chứng minh)

Ta có : CF = FM , CG = GB  => FG là đường trung bình của tam giác CMB => FG // AB (1)

Tương tự ta chứng minh được EH cũng là đường trung bình của tam giác DAM => EH // AB (2)
Từ (1) và (2) suy ra EH // FG  => EFGH là hình thang                                     (*)

Vì P và Q là trung điểm của AM và MB nên góc EPM = góc HQM = góc CAM = 60 độ

Mà EH // AB nên góc EFH = góc HGF = 60 độ                                               (**)

Từ (*) và (**) suy ra EFGH là hình thang cân.

17 tháng 11 2016

khó vải

15 tháng 11 2016

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)

\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)

\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)

\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)

\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)

\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)

\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Do đó trong a , b , c luôn có 2 số đối nhau.

Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)

\(\Rightarrow a^n=-b^n\)(Vì n lẻ )

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)

\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)

\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)

Vậy ...

14 tháng 11 2016

Đặt biểu thức trên là A

-Trường hợp a chia hết b:

Ta có: A nguyên nên a^2 + b^2 chia hết ab

Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a

=> a=b

=> (a^2+b^2)/ab= 2a^2/a^2=2

-Trường hợp a không chia hết b, hoặc b không chia hết a:

A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2

Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab

Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)

Mà a-b chia hết ab => \(a-b\ge ab\)

=> Phương trình vô nghiệm ở trường hợp này.

Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*

14 tháng 11 2016

A B C D O

Gọi O là giao điểm của AC và BD.

Ta có \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{ODA}=200\)

Mặt khác, ta có : \(S_{OAB}\le\frac{1}{2}OA.OB\) , \(S_{OBC}\le\frac{1}{2}OB.OC\) , \(S_{OCD}\le\frac{1}{2}OC.OD\) , \(S_{OAD}\le\frac{1}{2}OA.OD\)

Suy ra \(S_{ABCD}\le\frac{1}{2}\left(OA.OB+OB.OC+OC.OD+OD.OA\right)\)

\(=\frac{1}{2}\left[OA.\left(OB+OD\right)+OC.\left(OB+OD\right)\right]=\frac{1}{2}AC.BD\)

\(\le\frac{1}{2}BD^2\)

Hay : \(BD^2\ge2S_{ABCD}\Leftrightarrow BD^2\ge400\Leftrightarrow BD\ge20\)

Vậy giá trị nhỏ nhất của đường chéo BD bằng 20 khi \(\hept{\begin{cases}BD=AC\\BD\perp AC\end{cases}}\)