Bài toán 132

Chứng minh rằng \(n^2+11n+2\)không chia hết cho 12769 với mọi số nguyên n.

------------

Các bạn trình bày lời giải đầy đủ của mình vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Giải thưởng sẽ được công bố vào Thứ Sáu ngày 16/12/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Sáu ngày 16/12/2016.

------------

Chúc mừng các bạn sau đây đã có lời giải đúng và sớm nhất; Các bạn đã được cộng/thưởng 1 tháng VIP của Online Math.

Nguyễn Ngọc Minh

Nguyễn Thị Thùy Dương

Hoàng Ngọc Bảo Khuê

ngonhuminh

Cao Thương Huyền

-----------

Đáp án: 

Trước hết, ta thấy rằng 12769 = 1132, hơn nữa 113 là một số nguyên tố. Mọi số nguyên chia hết cho 1132 thì đều chia hết cho 113.

Ta chứng minh rằng, với n là một số nguyên, n2 + 11n + 2 chia hết cho 113 nhưng nó không chia hết cho 1132.

Cách 1: Ta có \(n^2+11n+2=\left(n-51\right)\left(n+62\right)+3164\)

                                                 \(=\left(n-51\right)\left(n+62\right)+28\times113\)

Nếu n2 + 11n + 2 chia hết cho 1132 thì nó chia hết cho 113, bởi vậy \(\left(n-51\right)\left(n+62\right)\)  chia hết cho 113.

Do 113 là số nguyên tố nên (n - 51) hoặc (n + 62) hoặc cả hai chia hết cho 113. Lại thấy (n + 62) - (n - 51) = 113 nên cả n + 62 và n - 51 đều chia hết cho 113. Vậy thì (n - 51)(n + 62) chia hết cho 1132.

Ta có n2 + 11n + 2 chia hết cho 1132 ; (n - 51)(n + 62) cũng chia hết cho 1132 mà \(n^2+11n+2=\left(n-51\right)\left(n+62\right)+28\times113\)   nên 28.113 chia hết cho 113(Vô lý)

Vậy  n2 + 11n + 2 không chia hết cho 1132 với mọi số nguyên n.

Cách 2: Bài giải của bạn Nguyễn Ngọc Minh :

Ta thấy : 12769 = 113 x 113

Giả sử A = n2 + 11n + 2 chia hết cho 12769

=> 4A = 4 (n2+ 11n + 2 ) chia hết cho 12769

     4A = 4n2 + 44n + 8 chia hết cho 12769

     4A = [ (2n)2+ 2 x 2n x 11 + 121 ] - 113 chia hết cho 12769

=> 4A = (2n+11)- 113 chia hết cho 12769 (1). 

Vậy thì 4A = (2n+11)- 113 chia hết cho 113.

=> (2n+1)2 chia hết cho 113 ( vì 113 chia hết cho 113 )

=> 2n + 1 chia hết cho 113 ( vì 113 là số nguyên tố )

=> (2n+1)2 chia hết cho 1132 = 12769 (2)

Từ (1) và (2) => 113 chia hết cho 12769 ( Vô lí )

Vậy n2 + 11n + 2 không chia hết cho 12769 với mọi số nguyên n.

Cách 3: Bài làm của bạn Nguyễn Thị Thùy Dương:

Giả sử  n2 + 11n + 2 chia hết cho 113 thì tồn tại số nguyên m để  n2 + 11n + 2 = 1132.m (m chẵn) hay phương trình \(n^2+11n-113^2.m+2=0\)có nghiệm nguyên.

Tuy nhiên \(\Delta=11^2-4\left(2-113^2.m\right)=4.113^2.m+113=113\left(4.113.m+1\right)\) không thể là số chính phương.

Khi đó \(n=\frac{-11+\sqrt{\Delta}}{2};n=\frac{-11-\sqrt{\Delta}}{2}\) không thể là các số nguyên.

Vậy  n2 + 11n + 2 không chia hết cho 113 với mọi số nguyên n.


315 bình luận

sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức:

Có thể bạn quan tâm