K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

đặt \(a+b=x,b+c=y;c+a=z\)

ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\Rightarrow3-\frac{1}{x+1}-\frac{1}{y+1}-\frac{1}{z+1}=1\) \(\)

=> \(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\)

=> \(\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{x}{x+1}=\frac{1}{x+1}\)

Áp dụng bđt cô si ta có \(\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

=> \(\frac{1}{x+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)

tương tự ta có 

\(\frac{1}{y+1}\ge2\sqrt{\frac{zx}{\left(z+1\right)\left(x+1\right)}}\)

\(\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

nhân từng vế của 3 bđt cùng chièu ta có 

\(\frac{1}{x+1}.\frac{1}{y+1}.\frac{1}{z+1}\ge8\sqrt{\frac{x^2y^2z^2}{\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2}}=8.\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\) 

=> \(1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)

15 tháng 10 2019

\(a+b+c\le\sqrt{3}\)

\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=1\)

Thay vào M ta có: \(M\le\frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét: \(\left(\frac{a}{a+b}+\frac{a}{a+c}\right)^2\ge\frac{4a^2}{\left(a+b\right)\left(a+c\right)}\Leftrightarrow\frac{a}{a+b}+\frac{a}{a+c}\ge\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

Tương tự rồi cộng vế vs vế ta được: \(M\le\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}}{2}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c = \(\frac{\sqrt{3}}{3}\)

17 tháng 10 2019

cosplay de chuyen thai nguyen 17-18

16 tháng 7 2016

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

16 tháng 7 2016

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

13 tháng 8 2017

Theo BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:

\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}\right)\)

Tương tự ta cũng có các BĐT sau:

\(\frac{bc}{a+1}\le\frac{1}{4}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right);\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

Cộng theo vế các BĐT cùng dấu có:

\(Q\le\frac{1}{4}\left(\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}\right)\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\left(a+b+c=1\right)\)

Khi a=b=c=1/3

a+b thì phải bạn ak

9 tháng 8 2017

Sửa đề thành a+b cho đẹp

\(Q=\frac{1-c}{c+1}+\frac{1-b}{b+1}+\frac{1-a}{a+1}\)

Ta có BĐT phụ \(\frac{1-c}{c+1}\ge-\frac{9}{8}c+\frac{7}{8}\)

\(\Leftrightarrow\frac{\left(3c-1\right)^2}{8\left(c+1\right)}\ge0\) *ĐÚNG*

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1-b}{b+1}\ge-\frac{9}{8}b+\frac{7}{8};\frac{1-a}{a+1}\ge-\frac{9}{8}a+\frac{7}{8}\)

Cộng theo vế 3 BĐT trên ta có:

\(Q\ge-\frac{9}{8}\left(a+b+c\right)+\frac{7}{8}\cdot3=\frac{3}{2}\)

Xayra khi \(a=b=c=\frac{1}{3}\)

25 tháng 3 2022

Ta có a2 + 1 \(\ge\)2a 

Khi đó \(\frac{1}{a^2+ab-a+5}=\frac{1}{a^2+1+ab-a+4}\le\frac{1}{2a+ab-a+4}=\frac{1}{ab+a+4}\)

Tương tự ta được \(\frac{1}{b^2+bc-b+5}\le\frac{1}{bc+b+4};\frac{1}{c^2+ac-c+5}\le\frac{1}{ac+c+4}\)

Cộng vế với vế => A \(\le\frac{1}{ab+a+4}+\frac{1}{bc+b+4}+\frac{1}{ca+c+4}\)

=> 4A \(\le\frac{4}{ab+a+1+3}+\frac{4}{bc+b+1+3}+\frac{4}{ca+c+1+3}\)

\(\le\frac{1}{ab+a+1}+\frac{1}{3}+\frac{1}{bc+b+1}+\frac{1}{3}+\frac{1}{ac+a+1}+\frac{1}{3}\)

\(=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+a+1}+1\)

\(=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ab}+1\)

\(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+1=\frac{ab+a+1}{ab+a+1}+1=1+1=2\)

=> \(A\le\frac{1}{2}\)(Dấu "=" xảy ra <=> a = b = c = 1)

26 tháng 3 2022

cho mik hỏi tí là làm sao ra được \(\frac{4}{ab+a+1+3}\le\frac{1}{ab+a+1}+\frac{1}{3}\) vậy ạ?

3 tháng 11 2016

\(\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2\)

\(\Leftrightarrow\frac{1}{a-1}=\left(1-\frac{1}{b-1}\right)+\left(1-\frac{1}{c-1}\right)\)

\(\Leftrightarrow\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\)

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{c-2}{c-1}}\)

Tương tự : \(\frac{1}{b-1}\ge2\sqrt{\frac{a-2}{a-1}.\frac{c-2}{c-1}}\)

\(\frac{1}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{a-2}{a-1}}\)

Nhân các BĐT theo vế : 

\(\frac{1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\ge\frac{8\left(a-2\right)\left(b-2\right)\left(c-2\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

\(\Leftrightarrow8\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\Leftrightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le\frac{1}{8}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{5}{2}\)

Vậy maxH = 1/8 <=> a = b = c = 5/2

12 tháng 9 2021

Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a+b+c\le6\)

Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)

\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

12 tháng 9 2021

bạn ơi , kết quả thì đúng r nhưng tại sao đoạn \(2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le6\)

20 tháng 5 2018

Ta có: \(\frac{1}{a+b+1}=\left(1-\frac{1}{b+c+1}\right)+\left(1-\frac{1}{c+a+1}\right)=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\) 

\(\Rightarrow\frac{1}{a+b+1}\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\) 

Tương tự \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(c+a\right)\left(a+b\right)}{\left(c+a+1\right)\left(a+b+1\right)}}\) 

               \(\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)  

Nhân từng vế ta có: \(\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\) 

\(\Rightarrow P=\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)