K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

Ta có:\(\sqrt{abc}=a+b+c\ge3\sqrt[3]{abc}\)\(\Rightarrow\left(\sqrt{abc}\right)^6\ge\left(3\sqrt[3]{abc}\right)^6\Leftrightarrow\left(abc\right)^3\ge3^6\left(abc\right)^2\)

\(\Leftrightarrow abc\ge3^6\)(1).Lại có:\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

BĐT cần chứng minh tương đương với:\(3\sqrt[3]{\left(abc\right)^2}\ge9\sqrt{abc}\Leftrightarrow\sqrt[3]{\left(abc\right)^2}\ge3\sqrt{abc}\)

\(\Leftrightarrow\left(\sqrt[3]{\left(abc\right)^2}\right)^6\ge\left(3\sqrt{abc}\right)^6\)\(\Leftrightarrow\left(abc\right)^4\ge3^6\left(abc\right)^3\Leftrightarrow abc\ge3^6\).Điều này luôn đúng theo (1)
Suy ra:\(ab+bc+ca\ge9\sqrt{abc}=9\left(a+b+c\right)\).Hoàn tất chứng minh
Dấu "=" xảy ra khi \(a=b=c=9\)
 

31 tháng 1 2019

Thanks bạn nhiều nhé!

23 tháng 11 2020

1)

Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c

24 tháng 11 2020

2)

\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)

Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)

\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)

5 tháng 12 2020

Đặt \(x=\sqrt{bc};y=\sqrt{ca};z=\sqrt{ab}\)\(\Rightarrow x^2+y^2+z^2+xyz=4\)\(\Rightarrow\left(x+y+z\right)^2-4=2\left(xy+yz+zx\right)-xyz\)

\(\Rightarrow\left(x+y+z\right)^2-4\left(x+y-z\right)+4=\left(2-x\right)\left(2-y\right)\left(2-z\right)\)\(\le\left(\frac{6-x-y-z}{3}\right)^3\)

Đặt \(t=x+y+z\Rightarrow\left(t-6\right)^3+27\left(t^2-4t+4\right)\le0\)\(\Leftrightarrow\left(t-3\right)\left(t+6\right)^2\le0\Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\left(đpcm\right)\)

Dấu '=' xảy ra <=> a=b=c=1

5 tháng 12 2020

Mình chưa hiểu ở dòng thứ 3 tại sao bạn lại đánh giá đc nó nhỏ hơn hoặc bằng \(\left(\frac{6-x-y-z}{3}\right)^3\)

Ta có 

\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3

ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)

=   ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)

> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3

= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27

= 12 .3 - 8xyz - 18 .3 +27

9 - 8 xyz

ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1

do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)

hok tốt

Ta có 

\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3

ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)

=   ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)

> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3

= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27

= 12 .3 - 8xyz - 18 .3 +27

9 - 8 xyz

ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1

do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)

hok tốt

bđt phụ sai mà cũng ko đc chuẩn hóa

23 tháng 8 2017

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

21 tháng 8 2020

Chú ý đến giả thiết a + b + c = 1 ta viết được \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1-c\right)\left(1+c\right)}}=\)\(\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}=\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}\)\(=\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)

Mặt khác áp dụng bất đẳng thức Cauchy ta được \(a^2+b^2+2\left(ab+bc+ca\right)\ge2ab+2\left(ab+bc+ca\right)=\)\(2\left(ab+bc\right)+2\left(ab+ca\right)\)và \(a+b\ge2\sqrt{ab}\)

Từ đó dẫn đến \(\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{ab}{2\sqrt{ab}\sqrt{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)\(=\frac{1}{2}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)

Mà theo bất đẳng thức quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có: \(\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\le\sqrt{\frac{1}{4}\left(\frac{ab}{2\left(ab+bc\right)}+\frac{ab}{2\left(ab+ca\right)}\right)}\)

\(=\frac{1}{2\sqrt{2}}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}=\frac{1}{2\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)

Từ đó ta có bất đẳng thức: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+a\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}\)(2) ; \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)(3)

Cộng theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+c\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)\(\le\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\)

Ta cần chứng minh\(\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\le\frac{3\sqrt{2}}{8}\)

Hay \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\le3\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)

\(\le\sqrt{3\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}+\frac{a}{a+b}\right)}=3\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 8 2020

Sửa đề: \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)

26 tháng 2 2021

Theo bđt Cauchy - Schwart ta có:

\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)

\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)

Đặt \(ab+bc+ca=x;abc=y\).

Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)

\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )

Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1

26 tháng 2 2021

sai rồi nhé bạn 

30 tháng 11 2019

Ta có: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}=\frac{a^2+ab+1}{\sqrt{a^2+ab+2ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+a^2+b^2+c^2}}=\sqrt{a^2+ab+1}\)

\(\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}=\sqrt{\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2}\)

\(=\frac{1}{\sqrt{5}}.\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+a^2+c^2\right)}\)

\(\ge\frac{1}{\sqrt{5}}\sqrt{\left(\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{2}b+a+c\right)^2}\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Tương tự ta cũng chứng minh đc:

 \(\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}b+\frac{3}{2}c+a\right)\)

\(\frac{c^2+ca+1}{\sqrt{c^2+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(\frac{5}{2}c+\frac{3}{2}a+b\right)\)

=> \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\frac{1}{\sqrt{5}}\left(5a+5b+5c\right)\)

\(=\sqrt{5}\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c =\(\frac{1}{\sqrt{3}}\)