Cho \(\Delta ABC.M,N,P\in BC,CA,AB.\)CM: AM,BN,CP đồng quy tại tâm tỉ cự của hệ điểm{A;B;C} với hệ số \(\left\{\alpha,\beta,\gamma\right\}\Leftrightarrow\hept{\begin{cases}\alpha+\beta+\gamma\ne0\\\beta\overrightarrow{MB}+\gamma\overrightarrow{MC}=\gamma\overrightarrow{NC}+\alpha\overrightarrow{NA}=\alpha\overrightarrow{PA}+\beta\overrightarrow{PB}=\overrightarrow{0}\end{cases}}\)
\(G=\left\{X\inℤ|X=\frac{3k-2}{k+1},k\inℤ\right\}\)
\(G=\left\{2;4;-2;8\right\}\)