K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2018

éo hiểu cái gì cả

3 tháng 3 2018

1 lieen hợp 2 lần. mỗi lần cho từng ngoặc


 

3 tháng 3 2018

Đk : x >= 2/5

pt <=> \(2\sqrt{\left(5x-2\right).\left(x^2+x+1\right)}\)= x^2 + 6x - 1

Đặt \(\sqrt{5x-2}=a\)và  \(\sqrt{x^2+x+1}=b\)

=> x^2+6x-1 = a^2+b^2

pt trở thành : 

2ab = a^2+b^2

<=> a^2-2ab+b^2 = 0

<=> (a-b)^2 = 0

<=> a=b

<=> 5x-2 = x^2+x+1

<=> x^2+x+1 - 5x+2 = 0

<=> x^2-4x+3 = 0

<=> (x-1).(x-3) = 0

<=> x-1=0 hoặc x-3=0 

<=> x=1 ( t/m ) hoặc x=3 ( t/m )

Vậy ........

Tk mk nha

28 tháng 4 2020

Ta có : \(\left(1+a\right)\left(1+b\right)=\frac{9}{4}\)

\(\Leftrightarrow a+b+ab=\frac{5}{4}\)

Áp dụng BĐT Cô-si, ta có :

\(a^2+b^2\ge2ab\)\(2\left(a^2+\frac{1}{4}\right)\ge2a\)\(2\left(b^2+\frac{1}{4}\right)\ge2b\)

cộng 3 vế theo vế, ta được :

\(3\left(a^2+b^2\right)+1\ge2\left(a+b+ab\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Áp dụng BĐT Min-cốp-ski,ta có :

\(P=\sqrt{1+a^4}+\sqrt{1+b^4}=\sqrt{1^2+\left(a^2\right)^2}+\sqrt{1^2+\left(b^2\right)^2}\)

\(\ge\sqrt{\left(1+1\right)^2+\left(a^2+b^2\right)^2}\ge\sqrt{4+\left(a^2+b^2\right)^2}\ge\frac{\sqrt{17}}{2}\)

Vậy GTNN của P là \(\frac{\sqrt{17}}{2}\) khi a = b = \(\frac{1}{2}\)

28 tháng 4 2020

Bài gốc của nó đây Câu hỏi của Incursion_03 - Toán lớp 9 - Học toán với OnlineMath(ko hiện link thì vô tcn)

Anh Incursion đặt ẩn phụ là nguyên bài này (chuyen Hưng Yên)