Giải hpt: \(\hept{\begin{cases}x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\\3\sqrt{8-x}-\frac{4y}{\sqrt{y+1}+1}=x^2-14y-8\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Trả lời :..............................
12+17+22= 51.......................
45+54= 99.......................

Giúp em bài toán lớp 6 này với : Chị Mai mua 1 số cây rau về trồng nếu mỗi hàng chồng 5 hoặc 6, 8 cây thì đều vừa đủ . nếu mỗi hàng trồng 7 cây thì thừa 2 cây . biết số cây ít hơn 400 . tính số cây .
CHIỀU EM PHẢI NỘP GIÚP EM VỚI
\(\sqrt{15x^2-6x\sqrt{10}+6}=\sqrt{6}\)
\(\Leftrightarrow\)\(15x^2-6x\sqrt{10}+6=6\)
\(\Leftrightarrow\)\(3\left(5x^2-2x\sqrt{10}+2\right)=6\)
\(\Leftrightarrow\)\(\left(\sqrt{5}x-\sqrt{2}\right)^2=2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{5}x-\sqrt{2}=\sqrt{2}\\\sqrt{5}x-\sqrt{2}=-\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2\sqrt{2}}{\sqrt{5}}\\x=0\end{cases}}}\)
...
Ta có:
\(x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)
Xét y=-1 thay vào tìm x
Xét y khác -1
\(pt\Leftrightarrow\frac{x-y}{y+1}-2+\sqrt{\frac{x-y}{y+1}}=0\) (2)
Đặt \(\sqrt{\frac{x-y}{y+1}}=a\left(a\ge0\right)\)
pt(2) trở thành
\(a^2+a-2=0\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)
Làm r nhưng mà làm lại hjhjhj
\(\hept{\begin{cases}x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\left(1\right)\\3\sqrt{8-x}-\frac{4y}{\sqrt{y+1}+1}=x^2-14y-8\left(2\right)\end{cases}}\)
\(ĐK:\hept{\begin{cases}y\left(x-y-1\right)+x\ge0\\x\le8\\y\ge-1\end{cases}}\)
\(\left(1\right)\Leftrightarrow\sqrt{y\left(x-y-1\right)+x}=-\left(x-3y-2\right)\)\(\Leftrightarrow\sqrt{xy-y^2-y+x}=-\left(x-3y-2\right)\)
\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=x-3y-2\)\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=\left(x-y\right)-2\left(y+1\right)\)
\(\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)(*)
* Với y = -1 thì từ (*) suy ra x = -1
Thay nghiệm \(\left(x,y\right)=\left(-1,-1\right)\)vào (2) thì ta thấy không đúng
* Với \(y\ne-1\)thì chia hai vế của phương trình (*) cho y + 1, ta được: \(\left(\frac{x-y}{y+1}\right)-2+\sqrt{\frac{x-y}{y+1}}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\frac{x-y}{y+1}}=1\left(tm\right)\\\sqrt{\frac{x-y}{y+1}}=-2\left(ktm\right)\end{cases}}\Leftrightarrow x-y=y+1\Leftrightarrow y=\frac{x-1}{2}\)
Khi đó \(\left(2\right)\Leftrightarrow3\sqrt{8-x}-\frac{4.\frac{x-1}{2}}{\sqrt{\frac{x-1}{2}+1}+1}=x^2-14.\frac{x-1}{2}-8\)
\(\Leftrightarrow3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1=0\)
Đặt \(f\left(x\right)=3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1\)
Ta có: \(f\left(-1\right)=6;f\left(8\right)=-3-6\sqrt{2}\Rightarrow f\left(-1\right).f\left(8\right)=-18-36\sqrt{2}< 0\)
\(\Rightarrow f\left(x\right)\)có ít nhất một nghiệm trên đoạn \(\left[-1;8\right]\)
Lại có f(7) = 0 \(\Rightarrow\)x = 7 là nghiệm của f(x) \(\Rightarrow y=3\)
Vậy hệ phương trình có 1 nghiệm \(\left(x,y\right)=\left(7,3\right)\)