Thống kê điểm hỏi đáp trong tuần qua.

Phùng Minh Quân

Điểm hỏi đáp: 5217

Ngày 15 - 11 16 - 11 18 - 11
Điểm 0 0 3

Tổng: 5217 | Điểm tuần: 3 | Trả lời 7 ngày qua: 6 | Lượt trả lời trong tháng: 9

Lượt trả lời trong 3 tháng: 124

Những câu trả lời của Phùng Minh Quân:

Vào lúc: 2019-11-18 18:57:41 Xem câu hỏi

tth_new ờ, định giải lại mà lười quá :D 

Vào lúc: 2019-11-17 20:08:00 Xem câu hỏi

\(VT=2\Sigma_{cyc}a^2b+\Sigma_{cyc}\frac{1}{ab^2}=\Sigma\left(a^2b+a^2b+\frac{1}{ab^2}\right)\ge3\left(a+b+c\right)=9\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)

Vào lúc: 2019-11-16 17:37:47 Xem câu hỏi

Cần CM: \(\frac{1}{a^2+b+c}=\frac{1}{a^2-a+3}\ge\frac{-1}{9}a+\frac{4}{9}\)

\(\Leftrightarrow\)\(a^3-5a^2+7a-3\le0\)\(\Leftrightarrow\)\(\left(a-3\right)\left(a-1\right)^2\le0\) ( đúng do \(0< a< 3\) ) 

\(\Rightarrow\)\(P\ge\frac{-1}{9}\left(a+b+c\right)+\frac{12}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Vào lúc: 2019-11-15 19:44:41 Xem câu hỏi

Có: \(\left(a^2+b^2\right)\left(a^5+b^5\right)=a^5+b^5+a^2b^3+a^3b^2\)

\(\Leftrightarrow\)\(a^2+b^2=\frac{a^2b^2\left(a+b\right)}{a^5+b^5}+1=\frac{a^2b^2\left(a+b\right)}{a^3+b^3}+1=\frac{a^2b^2}{a^2-ab+b^2}+1\le ab+1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)

Vào lúc: 2019-11-14 17:48:14 Xem câu hỏi

ĐK: \(x,y\ne-1\)

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{x^2}{y^2+2y+1}+\frac{y^2}{x^2+2x+1}=\frac{8}{9}\\\frac{4x+4y-5xy+4}{xy+x+y+1}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{8}{9}\\4-\frac{9xy}{\left(x+1\right)\left(y+1\right)}\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+b^2=\frac{8}{9}\\ab=\frac{4}{9}\end{cases}}\)\(\left(a;b\right)=\left(\frac{x}{y+1};\frac{y}{x+1}\right)\)

Vào lúc: 2019-11-12 17:00:06 Xem câu hỏi

a) ĐK: \(\orbr{\begin{cases}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{cases}}\)

pt \(\Leftrightarrow\)\(x^2-6x+9-4\sqrt{x^2-6x+6}=0\)

\(\Leftrightarrow\)\(a^2-4a+3=0\)\(\left(a=\sqrt{x^2-6x+6}\ge0\right)\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2-6x+6}=1\\\sqrt{x^2-6x+6}=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1hoacx=5\\x=3\pm2\sqrt{3}\end{cases}}\left(nhan\right)\)

b) ĐK.. 

pt \(\Leftrightarrow\)\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|\frac{x-2}{x-1}\right|=-3\left(loai\right)\\\left|\frac{x-2}{x-1}\right|=1\end{cases}}\Leftrightarrow x=\frac{3}{2}\left(nhan\right)\)

Vào lúc: 2019-11-08 18:14:22 Xem câu hỏi

đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0) 

bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)

Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD 

Vào lúc: 2019-11-08 12:10:10 Xem câu hỏi

\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)

:) 

Vào lúc: 2019-11-05 17:59:26 Xem câu hỏi

\(\sqrt{2020a+\frac{\left(b-c\right)^2}{2}}\le\sqrt{2020a+\frac{\left(b+c\right)^2}{2}}=\sqrt{2020a+\frac{\left(1010-a\right)^2}{2}}\)

\(=\sqrt{\frac{1}{2}\left(a^2+2020a+1010^2\right)}=\frac{1}{\sqrt{2}}\left(a+1010\right)\)

=> \(VT\le\frac{1}{\sqrt{2}}\left(a+b+c+3.1010\right)=2020\sqrt{2}\)

Dấu "=" xảy ra khi a=1010;b=0;c=0 và các hoán vị 

Vào lúc: 2019-10-31 05:53:54 Xem câu hỏi

\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)

\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)

Vào lúc: 2019-10-31 05:03:43 Xem câu hỏi

làm cách đó xét nghiệm cũng đủ mà \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=\pm y\end{cases}}\Rightarrow y=\pm1\Rightarrow\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Vào lúc: 2019-10-30 16:00:22 Xem câu hỏi

ko dùng điều kiện :) 

\(sigma\sqrt{\frac{1+a^2}{b+c}}\ge sigma\frac{a+1}{\sqrt{2\left(b+c\right)}}\ge sigma\frac{2\left(a+1\right)}{b+c+2}=sigma\left(\frac{2a^2}{ab+ca+2a}+\frac{2}{b+c+2}\right)\)

\(\ge\frac{2\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)+2\left(a+b+c\right)}+\frac{18}{2\left(a+b+c\right)+6}\)

\(\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+\left(a+b+c\right)}+\frac{9}{a+b+c+3}=\frac{3\left(a+b+c\right)}{a+b+c+3}+\frac{9}{a+b+c+3}=3\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)

Vào lúc: 2019-10-26 20:25:43 Xem câu hỏi

ĐK: \(m\ge-1\)

Có: \(0\le x\le4\)

\(\Rightarrow\)\(\hept{\begin{cases}0\le x^2\le16\\-12\le-3x\le0\end{cases}}\Rightarrow-12\le x^2-3x\le16\)

Mà \(\left|x^2-3x+2\right|\le2m+2\)\(\Leftrightarrow\)\(-2m-4\le x^2-3x\le2m\)

\(\Rightarrow\)\(\hept{\begin{cases}-2m-4\le-12\\2m\ge16\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge4\\m\ge8\end{cases}}\)

kết hợp với đk \(\Rightarrow\)\(m\ge8\)

Vào lúc: 2019-10-26 20:04:40 Xem câu hỏi

\(\left(\tan\alpha;\cot\alpha\right)=\left(a;b\right)\) cho gọn, trong đó \(b=\frac{1}{a}\)

\(B=a+b+\frac{4}{a+b}-\frac{3}{a+b}\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}-\frac{3}{a+\frac{1}{a}}\ge4-\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(\tan\alpha=\cot\alpha=1\)

Vào lúc: 2019-10-26 05:39:12 Xem câu hỏi

Cần CM : \(a^{k+1}-a^k\ge a-1\)\(\left(k\inℕ\right)\) (1) 

\(\Leftrightarrow\)\(a^k\left(a-1\right)-\left(a-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)\left(a^k-1\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-1\right)^2\left(a^{k-1}-a^{k-2}+a^{k-3}-a^{k-4}+...+1\right)\ge0\) ( đúng ) 

=> (1) đúng 

Áp dụng vào bài toán,với k = 7 ta có \(\hept{\begin{cases}a^8-a^7\ge a-1\\b^8-b^7\ge a-1\end{cases}}\Rightarrow a^8+b^8-a^7-b^7\ge a+b-2=0\)

\(\Leftrightarrow\)\(a^8+b^8\ge a^7+b^7\)

Dấu "=" xảy ra khi \(a=b=1\)

Vào lúc: 2019-10-25 19:44:57 Xem câu hỏi

a) \(I=\frac{U}{R_{td}}=\frac{U}{R_1+R_2}=\frac{12}{45+15}=0,2\left(A\right)\)

\(P=UI=12.0,2=2,4\) ( W ) 

b) Đèn sáng bth. Vì \(U_1=U-U_2=U-I_2.R_2=U-I.R_2=12-0,2.15=9=U_{den}\)

\(A=P.t=2,4.600=1440\left(J\right)\)

Vào lúc: 2019-10-21 20:18:02 Xem câu hỏi

bđt \(\Leftrightarrow\)\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge3a^3b+3b^3c+3c^3a\)

Có: \(a^4+a^2b^2\ge2a^3b\) tương tự với b, c, do đó cần cm: \(a^2b^2+b^2c^2+c^2a^2\ge a^3b+b^3c+c^3a\)

\(\Leftrightarrow\)\(a^2b\left(b-a\right)+b^2c\left(c-b\right)+c^2a\left(a-c\right)\ge0\) (1) 

Do a,b,c vai trò như nhau nên giả sử \(0\le a\le b\le c\) ta có: 

\(c^2a\left(a-c\right)=c.c.a\left(a-c\right)\ge b.a.a\left(a-c\right)=a^2b\left(a-c\right)\)

\(\Rightarrow\)\(VT_{\left(1\right)}\ge a^2b\left(b-a\right)+b^2c\left(c-b\right)+a^2b\left(a-c\right)=a^2b\left(b-a+a-c\right)+b^2c\left(c-b\right)\)

\(=a^2b\left(b-c\right)-b^2c\left(b-c\right)=b\left(b-c\right)\left(a^2-bc\right)\)

Mà \(0\le a\le b\le c\) nên \(\hept{\begin{cases}b-c\le0\\a^2-bc\le0\end{cases}}\)\(\Rightarrow\)\(VT_{\left(1\right)}\ge b\left(b-c\right)\left(a^2-bc\right)\ge0\)

Vào lúc: 2019-10-18 20:45:25 Xem câu hỏi

\(\sqrt{5a^2+38ab+21b^2}=\sqrt{5a^2+8ab+30ab+21b^2}\le\sqrt{9a^2+30ab+25b^2}=3a+5b\)

Làm nốt :D 

Vào lúc: 2019-10-18 20:37:02 Xem câu hỏi

a) pt có nghiệm kép \(\Leftrightarrow\)\(\Delta=45-12m=0\)\(\Leftrightarrow\)\(m=\frac{15}{4}\)

b) Viet \(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=3m-11\end{cases}}\)

\(2019=2017x_1+2018x_2=2017\left(x_1+x_2\right)+x_2=2017+x_2\)\(\Leftrightarrow\)\(x_2=2\)\(\Rightarrow\)\(x_1=-1\)

\(\Rightarrow\)\(3m-11=-2\)\(\Leftrightarrow\)\(m=3\)

Vào lúc: 2019-10-18 17:58:33 Xem câu hỏi

Có: \(1=\sin^2x+\cos^2x\ge2\sin x.\cos x\)\(\Leftrightarrow\)\(\sin x.\cos x\le\frac{1}{2}\)

\(M=\frac{1}{3\left(\frac{1}{\sin x}+\frac{1}{\cos x}\right)+\frac{2}{\sin x.\cos x}}\le\frac{1}{\frac{6}{\sqrt{\sin x.\cos x}}+\frac{2}{\sin x.\cos x}}\le\frac{1}{\frac{6}{\sqrt{\frac{1}{2}}}+\frac{2}{\frac{1}{2}}}=\frac{1}{6\sqrt{2}+4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{\sin x}=\frac{1}{\cos x}\\\sin^2x+\cos^2x=1\end{cases}}\Leftrightarrow\sin x=\cos x=\frac{1}{\sqrt{2}}\)\(\Rightarrow\)\(x=45^0\)

Trang trước Trang tiếp theo