Thống kê điểm hỏi đáp trong tuần qua.

Edogawa Conan

Điểm hỏi đáp: 6305

Ngày 02 - 08
Điểm 1

Tổng: 6305 | Điểm tuần: 1 | Trả lời 7 ngày qua: 5 | Lượt trả lời trong tháng: 5

Lượt trả lời trong 3 tháng: 105

Những câu trả lời của Edogawa Conan:

Vào lúc: 2020-07-21 21:43:45 Xem câu hỏi

Với a,b,c > 0

Áp dụng bđt cosi cho 2 số dương \(\frac{a^2}{b^2}\)và \(\frac{b^2}{c^2}\), ta có:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\) (1)

CMTT: \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\frac{c}{b}\)(2)

 \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)(3)

Từ (1), (2) và (3) cộng vế theo vế:

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{a^2}{b^2}+\frac{c^2}{a^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{a}{c}+2\frac{c}{b}+2\frac{b}{a}\)

<=> \(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)

<=> \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Vào lúc: 2020-07-21 16:49:19 Xem câu hỏi

A B C D M N

Ta có: \(S_{AMN}=\frac{BN.AM}{2}=\frac{BN\cdot\frac{1}{2}AB}{2}\)

\(S_{ABN}=\frac{AB.BN}{2}\)

=> \(\frac{S_{AMN}}{S_{ABN}}=\frac{\frac{\frac{1}{2}BN.AB}{2}}{\frac{AB.BN}{2}}=\frac{1}{2}\) => \(S_{AMN}=\frac{1}{2}S_{ABN}\)(1)

Ta lại có: BN = 2NC; BN + NC = BC => BN = 2/3BC

 \(S_{ABN}=\frac{AB.BN}{2}=\frac{AB\cdot\frac{2}{3}BC}{2}\)

\(S_{ABCD}=AB.BC\)

\(\frac{S_{ABN}}{S_{ABCD}}=\frac{\frac{\frac{2}{3}AB.BC}{2}}{AB.BC}=\frac{1}{3}\) => \(S_{ABN}=\frac{1}{3}S_{ABCD}\) => \(\frac{1}{2}S_{ABN}=\frac{1}{6}S_{ABCD}\)(2)

Từ (1) và (2) => \(S_{AMN}=\frac{1}{6}S_{ABCD}\)

Vào lúc: 2020-07-21 16:29:43 Xem câu hỏi

b) Áp dụng bđt bunhiacopski, ta có:

(xy + xz + yz)2 \(\le\)(x2 + y2 + z2)(x2 + y2 + z2)

hay : (x2 + y2 + z2\(\ge\)42 = 16

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)

CMBĐT đúng: tự cm (áp dụng bđt bunhiacopsky để cm)

Khi đó: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}=\frac{16}{3}\)

Vào lúc: 2020-07-21 16:03:59 Xem câu hỏi

2. Đặt A = 4x - x2 - 1 = -(x^2 - 4x + 4) + 3 = -(x - 2)2 + 3 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy MaxA = 3 khi x = 2

Vào lúc: 2020-07-21 16:02:31 Xem câu hỏi

1.a) (2 + 1)(22 + 1)((24 + 1)(28 + 1) = (22 - 1)(22 + 1)(24 + 1)(28 + 1) = (24 - 1)(24 + 1)(28 + 1)

= (28 - 1)(28 + 1) = 216 - 1

b) 7(23 + 1)(26 + 1)(212 + 1)(224 + 1) = (23 - 1)(23 + 1)(26 + 1)(212 + 1)(224 + 1)

= (26 - 1)(26 + 1)(212 + 1)(224 + 1) = (212 - 1)(212 + 1)(224 + 1) = (224 - 1)(224 + 1) = 248 - 1

c) (x2 - x + 1)(x2 + x + 1)(x2 - 1) = [(x2 - x + 1)(x + 1)][(x2 + x + 1)(x - 1)] = (x3 + 1)(x3 - 1) = x6 - 1

Vào lúc: 2020-07-20 22:41:26 Xem câu hỏi

x - y = 2 => y = x - 2

Khi đó: B = 2x2 + y2 = 2x2 + (x-  2)2 = 2x2 + x2 - 4x + 4 = 3x2 - 4x + 4 = 3(x2 - 4/3x + 4/9) + 8/3 = 3(x - 2/3)2 + 8/3 \(\ge\)8/3 \(\forall\)x

Dấu "=" xảy ra <=> x - 2/3 = 0 <=> x = 2/3 => y = 2/3 - 2 = -4/3

Vậy MinB = 8/3 khi x = 2/3 và y = -4/3

Vào lúc: 2020-07-20 22:32:36 Xem câu hỏi

Ta có: x - y = 2 => x = 2 + y

A = x3 - y3 = (X - y)(x2 + xy + y2) = 2(x2 + xy + y2) = 2(x2 - 2xy + y2) + 6xy = 2(x - y)2 + 6xy = 8  + 6xy

A = 8 + 6y(2 + y) = 8 + 12y + 6y2 = 6(y2 + 2y + 1) + 2 = 6(y + 1)2 + 2 \(\ge\)\(\forall\)y

Dấu "=" xảy ra <=> y + 1 = 0 <=> y = -1 <=> x = 2 - 1 = 1

Vậy MinA = 2 khi x = 1 và y = -1

Vào lúc: 2020-07-20 22:14:21 Xem câu hỏi

(y - 0,5)4 + (y + 0,5)4 = 1

<=> (y - 0,5)4 + (y - 0,5 + 1)4 = 1

Đặt y - 0,5 = a

<=> a4 + (a + 1)4 = 1

<=> a4 + a4 + 4a3 + 6a2 + 4a + 1 = 1

<=> 2a4 + 4a3 + 6a2 + 4a = 0

<=> 2a(a3 + 2a2 + 3a + 2) = 0

<=> a(a3 + a2 + a2 + a + 2a + 2) = 0

<=> a(a + 1)(a2 + a + 2) = 0

<=> a(a + 1) = 0 (vì a2 + a + 2 = (a2 + a + 1/4) + 7/4 = (a + 1/2)2 + 7/4  > 0)

<=> \(\orbr{\begin{cases}a=0\\a+1=0\end{cases}}\) <=> \(\orbr{\begin{cases}a=0\\a=-1\end{cases}}\)

Với a = 0 => y - 0,5 = 0 <=> y = 0,5

Với a = -1 => y - 0,5 = -1 <=> y = -0,5

Vậy S = {0,5; -0,5}

Vào lúc: 2020-07-20 21:59:05 Xem câu hỏi

Ta có: xy = ab <=> \(\frac{x}{a}=\frac{b}{y}\)(a; y \(\ne\)0)

Đặt \(\frac{x}{a}=\frac{b}{y}=k\) => \(\hept{\begin{cases}x=ak\\b=yk\end{cases}}\)(*)

Khi đó: x + y = a + b <=> ak + y = a + yk

<=> ak - a + y - yk = 0

<=> a(k - 1) - y(k - 1) = 0

<=> (a - y)(k - 1) = 0

<=> \(\orbr{\begin{cases}a=y\\k=1\end{cases}}\)

Với a = y => b = x

<=> an = yn  (1) và bn = x(2) (x \(\in\)N)

Từ (1) và (2) cộng vế theo vế : an + bn = yn + xn

Với k = 1 thay vào (*) => \(\hept{\begin{cases}x=a\\b=y\end{cases}}\) <=> \(\hept{\begin{cases}x^n=a^n\\y^n=b^n\end{cases}}\) => xn + yn = an + bn

=> đpcm

Vào lúc: 2020-07-20 21:26:30 Xem câu hỏi

Áp dụng BĐT svacsơ: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}+\frac{x_3^2}{y_3}\ge\frac{\left(x_1+x_2+x_3\right)^2}{y_1+y_2+y_3}\)

Ta có: \(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\)

Vào lúc: 2020-07-20 21:11:06 Xem câu hỏi

B = \(\frac{2x^2-6x+5}{x^2-2x+1}=\frac{\left(x^2-4x+4\right)+\left(x^2-2x+1\right)}{x^2-2x+1}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\forall x\)
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy MinB = 1 khi x = 2

Vào lúc: 2020-07-20 21:08:21 Xem câu hỏi

A = \(\frac{x+1}{x^2}=\frac{1}{x}+\frac{1}{x^2}\)
Đặt \(\frac{1}{x}=a\)=> A = a + a2 = (a2 + a + 1/4) - 1/4  = (a + 1/2)2 - 1/4 \(\ge\)-1/4 \(\forall\)x

Dấu "=" xảy rA <=> a + 1/2 = 0 <=> a = -1/2

<=> 1/x = -1/2 => x = -2

Vậy MinA = -1/4 khi x = -2

Vào lúc: 2020-07-20 17:11:47 Xem câu hỏi

Ta có: a3 - b3 = 3ab  + 1

<=> a3 - b3 - 3ab - 1 = 0

<=> (a - b)(a2 + ab + b2) - 3ab - 1 = 0

<=> (a - b)3 + 3ab(a - b) - 3ab - 1 = 0

<=> (a - b - 1)(a2 - 2ab + b2 + a - b + 1) + 3ab(a - b - 1) = 0

<=> (a - b - 1)(a2 - 2ab + b2 + a - b+ 1 + 3ab) = 0

<=> (a - b - 1)(a2 + b2 + ab + a - b + 1) = 0

<=> \(\orbr{\begin{cases}a-b-1=0\left(1\right)\\a^2+b^2+ab+a-b+1=0\left(2\right)\end{cases}}\)

Giải: (1) a - b - 1 = 0 <=> a = 1 + b

Khi đó: a + b = 1 + b + b = 1 + 2b

Giải (2) a2 + b2 + ab + a - b + 1 = 0

<=> 2a2 + 2b2 + 2ab + 2a - 2b + 2 = 0

<=> (a2 + 2ab + b2) + (a2  + 2a + 1) + (b2 - 2b + 1) = 0

<=> (a + b)2 + (a + 1)2 + (b - 1)2 = 0

<=> \(\hept{\begin{cases}a+b=0\\a+1=0\\b-1=0\end{cases}}\) <=> a = -1 và b = 1

=> a + b = 0

Vào lúc: 2020-07-20 16:44:15 Xem câu hỏi

A = (x2 - 3x + 1)(24 + 3x - x2)

A = -(x2 - 3x + 1)(x2 - 3x -24)

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1)]

A = -[(x2 - 3x + 1)2 - 25(x2 - 3x + 1) + 156,25 - 156,25]

A = -(x2 - 3x + 1 - 12,5)2 + 156,25 

A = -(x2 - 3x - 11,5)2 + 156,25 \(\le\)156,25 \(\forall\)x

Dấu "=" xảy ra <=> x2 - 3x - 11,5 = 0

<=> (x2 - 3x + 2,25) = 3,75

<=> (x - 1,5)2 = 3,75

<=> \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Vậy MaxA = 156,25 khi \(\orbr{\begin{cases}x=\frac{3+\sqrt{15}}{2}\\x=\frac{3-\sqrt{15}}{2}\end{cases}}\)

Vào lúc: 2020-07-20 10:26:31 Xem câu hỏi

\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)

\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)

\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)

\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)

Vào lúc: 2020-07-18 08:27:09 Xem câu hỏi

Ta có:A =  5x2 + y2 + z2 - 4x - 2xy - z - 1

A = (x2 - 2xy + y2) + (4x2 - 4x + 1) + (z2 - z + 1/4) - 9/4

A = (x - y)2 + (2x - 1)2 + (z - 1/2)2 - 9/4 \(\ge\)- 9/4 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\2x-1=0\\z-\frac{1}{2}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=\frac{1}{2}\\z=\frac{1}{2}\end{cases}}\) <=> x =  y = z = 1/2

Vậy MinA = -9/4 khi x = y = z = 1/2

Vào lúc: 2020-07-16 22:27:48 Xem câu hỏi

B = 150 - x2 + 2xy - 2y2 + 8x - 2y

B = -(x2 - 2xy + 2y2 - 8x + 2y - 150)

B = -[(x2 - 2xy + y2) - 8(x - y) + 16 + (y2 - 6y + 9) - 175]

B = -(x - y - 4)2 - (y - 3)2 + 175 \(\le\)175 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-4=0\\y-3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y+4\\y=3\end{cases}}\) <=> \(\hept{\begin{cases}x=7\\y=3\end{cases}}\)

Vậy MaxB = 175 khi x = 7 và y = 3

Vào lúc: 2020-07-16 22:24:40 Xem câu hỏi

A = -2x2 - y2 + 2xy + 10x - 6y + 2020

A = -(2x2 + y2 - 2xy - 10x + 6y - 2020)

A = -[(x2 - 2xy + y2) - 6(x - y) + 9 + (x2 - 4x + 4) - 2033)

A = -[(x - y - 3)2 + (x - 2)2] + 2033 < = 2033

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y-3=0\\x-2=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x-3\\x=2\end{cases}}\) <=> \(\hept{\begin{cases}y=-1\\x=2\end{cases}}\)

Vậy MaxA = 2033 khi  x = 2 và y = -1

Vào lúc: 2020-07-16 21:42:05 Xem câu hỏi

9(x + 5)2 - (x - 7)2 = 0

<=> (3x + 15)2 - (x - 7)2 = 0

<=> (3x + 15 - x + 7)(3x + 15  + x - 7) = 0

<=> (4x + 22)(4x + 8) = 0

<=> 8(2x + 11)(x + 2) = 0

<=> (2x + 11)(x + 2) = 0

<=> \(\orbr{\begin{cases}2x+11=0\\x+2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{11}{2}\\x=-2\end{cases}}\)

Vậy S = {-11/2; -2}

(2x + 1)2 - (x - 1)2 = 0

<=> (2x + 1 - x + 1)(2x + 1 + x - 1) = 0

<=> (x + 2).3x = 0

<=> \(\orbr{\begin{cases}x+2=0\\3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=0\end{cases}}\)

Vậy S = {-2; 0}

Vào lúc: 2020-07-16 21:09:52 Xem câu hỏi

Đk: x \(\ge\)0; x \(\ne\)9

M = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để M nguyên <=> \(\frac{4}{\sqrt{x}-3}\in Z\)

<=> \(4⋮\sqrt{x}-3\)<=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Do \(\sqrt{x}-3\ge-3\) => \(\sqrt{x}-3\in\left\{\pm1;\pm2;4\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)         1            -1        2         -2          4
  x    16   4    25  1 49

Vậy ....

Trang trước Trang tiếp theo