K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Để ý thấy mấy cái trong ngoặc đều < 0 nên VT=0 khi x=y=z=0

Khi đó S=0

Vậy

4 tháng 3 2020

\(\frac{3}{2}=a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\)

\(\le\frac{a^2+1-b^2}{2}+\frac{b^2+1-c^2}{2}+\frac{c^2+1-a^2}{2}=\frac{3}{2}\)

=> \(\frac{3}{2}\le\frac{3}{2}\)( chỉ xảy ra dấu "=" )

Dấu "=" xảy ra <=> \(\hept{\begin{cases}a^2=1-b^2\\b^2=1-c^2\\c^2=1-a^2\end{cases}}\)=> \(a^2+b^2+c^2=3-\left(a^2+b^2+c^2\right)\)

=> \(B=a^2+b^2+c^2=\frac{3}{2}\)

4 tháng 3 2020

Không mất tính tổng quát , giả sử m < n < p < q

Nếu m \(\ge\)3 thì : \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{mnpq}\le\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3.5.7}< 1\)

Suy ra m = 2 

Khi đó : \(\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{2npq}=\frac{1}{2}\) ( 1 )

Nếu n \(\ge\)5 thì \(\frac{1}{n}+\frac{1}{p}+\frac{1}{q}+\frac{1}{2npq}\le\frac{1}{5}+\frac{1}{7}+\frac{1}{11}+\frac{1}{2.5.7.11}< \frac{1}{2}\)

Vậy n = 3 và ( 1 ) trở thành : \(\frac{1}{p}+\frac{1}{q}+\frac{1}{6pq}=\frac{1}{6}\)

\(\Leftrightarrow\left(p-6\right)\left(q-6\right)=37\Rightarrow p=7;q=43\)

Vậy (m,n,p,q) = .( 2,3,7,43 ) và các hoán vị của nó

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

4 tháng 3 2020

m,n,p,q có nguyên tố ko bạn

3 tháng 3 2020

Hệ đẳng cấp. Xét 2 TH: x = 0 và x khác 0.

+) Th1: x = 0 ---> không thỏa mãn

+) Th2: x khác 0 

Đặt: y = ax; z = bx ( a; b > 0)

ta có hệ mới:

\(\hept{\begin{cases}x^2\left(a^2+b^2\right)=50\\x^2\left(1+a+\frac{a^2}{2}\right)=169\\x^2\left(1+b+\frac{b^2}{2}\right)=144\end{cases}}\)

<=> \(\hept{\begin{cases}\frac{a^2+b^2}{1+a+\frac{a^2}{2}}=\frac{50}{169}\\\frac{1+a+\frac{a^2}{2}}{1+b+\frac{b^2}{2}}=\frac{169}{144}\end{cases}}\) <=> \(\hept{\begin{cases}144a^2-50a-50+169b^2=0\\144a^2+288a-50-169b^2-338b=0\end{cases}}\)

Lấy vế dưới trừ vế trên ta có:

\(338a-338b^2-338b=0\) <=> \(a=b^2+b\)  Thế vào 1 trong 2 phương trình ta có:

\(144\left(b^2+b\right)^2-50\left(b^2+b\right)-50+169b^2=0\)

<=> \(144b^4+288b^3+263b^2-50b-50=0\)

<=> \(\left(144b^4-25b^2\right)+\left(288b^3-50b\right)+\left(288b-50\right)=0\)

<=> \(\left(144b^2-25\right)\left(b^2+2b+2\right)=0\)

<=> \(144b^2-25=0\)

<=> \(b=\pm\frac{5}{12}\)

+) Với \(b=\frac{5}{12}\)ta có: \(a=\frac{85}{144}\)

Do đó:  \(x^2\left[\left(\frac{5}{12}\right)^2+\left(\frac{85}{144}\right)^2\right]=50\)

<=> \(x^2=\frac{41472}{433}\)

=> \(K=xy+yz+zx=ax^2+bx^2+abx^2=x^2\left(a+b+ab\right)\) Em thay vào tính

+) Tương tự với b = -5/12