K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Dat \(P=\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}\)

\(=\frac{a^6}{a^2b+ca^2}+\frac{b^6}{b^2c+ab^2}+\frac{c^6}{c^2a+bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Ta di chung minh:

\(\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Ta co BDT:

\(a^3+b^3\ge ab\left(a+b\right)\)

\(b^3+c^3\ge bc\left(b+c\right)\)

\(c^3+a^3\ge ca\left(c+a\right)\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

Suy ra BDT da duoc chung minh

Dau '=' ra khi \(a=b=c\)

20 tháng 9 2019

Dat P=\frac{a^4}{b+c}+\frac{b^4}{c+a}+\frac{c^4}{a+b}P=b+ca4​+c+ab4​+a+bc4​

=\frac{a^6}{a^2b+ca^2}+\frac{b^6}{b^2c+ab^2}+\frac{c^6}{c^2a+bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}=a2b+ca2a6​+b2c+ab2b6​+c2a+bc2c6​≥ab(a+b)+bc(b+c)+ca(c+a)(a3+b3+c3)2​

Ta di chung minh:

\frac{\left(a^3+b^3+c^3\right)^2}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2}ab(a+b)+bc(b+c)+ca(c+a)(a3+b3+c3)2​≥2a3+b3+c3​

\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)⇔2(a3+b3+c3)≥ab(a+b)+bc(b+c)+ca(c+a)

Ta co BDT:

a^3+b^3\ge ab\left(a+b\right)a3+b3≥ab(a+b)

b^3+c^3\ge bc\left(b+c\right)b3+c3≥bc(b+c)

c^3+a^3\ge ca\left(c+a\right)c3+a3≥ca(c+a)

\Rightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)⇒2(a3+b3+c3)≥ab(a+b)+bc(b+c)+ca(c+a)

Suy ra BDT da duoc chung minh

Dau '=' ra khi a=b=ca=b=c

15 tháng 9 2019

PT <=> \(x^2-12+\left(x-4\right)\left(\sqrt{x^2+4}-4\right)=0\)

<=> \(x^2-12+\left(x-4\right).\frac{x^2-12}{\sqrt{x^2+4}+4}=0\)

<=> \(\orbr{\begin{cases}x^2-12=0\\1+\frac{x-4}{\sqrt{x^2+4}+4}=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\pm2\sqrt{3}\\x=-\sqrt{x^2+4}\left(VN\right)\end{cases}}\)

Vậy \(x=\pm2\sqrt{3}\)

6 tháng 5 2020

IMO, 2001

Đặt \(x=\frac{a}{\sqrt{a^2+8bc}}+\frac{b}{\sqrt{b^2+8ac}}+\frac{c}{\sqrt{c^2+8ab}}\left(x;y;z\in\left(0;1\right)\right)\)

Để ý rằng \(\frac{a^2}{8bc}=\frac{x^2}{1-x^2};\frac{b^2}{8ac}=\frac{y^2}{1-y^2};\frac{c^2}{8ba}=\frac{z^2}{1-z^2}\)

=> \(\frac{1}{512}=\left(\frac{x^2}{1-x^2}\right)\left(\frac{y^2}{1-y^2}\right)\left(\frac{z^2}{1-z^2}\right)\)

Ta cần chứng minh \(x+y+z\ge1\)với \(x;y;z\in\left(0;1\right)\)và \(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)=512\left(xyz\right)^2\left(1\right)\)

Giả sử ngược lại x+y+z<1

Theo BĐT AM-GM ta có:

\(\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)>\left[\left(x+y+z\right)^2-x^2\right]\left[\left(x+y+z\right)^2-y^2\right]\left[\left(x+y+z\right)^2-z^2\right]\)

\(=\left(x+x+y+z\right)\left(y+z\right)\left(x+y+z+y\right)\left(z+x\right)\left(z+z+x+y\right)\left(x+y\right)\)

\(\ge4\left(x^2yz\right)^{\frac{1}{4}}\cdot2\left(yz\right)^{\frac{1}{2}}\cdot4\left(y^2zx\right)^{\frac{1}{4}}\cdot2\left(xz\right)^{\frac{1}{2}}\cdot4\left(z^2xy\right)^{\frac{1}{4}}\cdot2\left(xy\right)^{\frac{1}{2}}=512\left(xyz\right)^2\)

Điều này mâu thuẫn với (1)

Vậy điều phản chứng là sai và ta có đpcm

15 tháng 9 2019

Ta có \(\frac{a.1-bc}{a.1+bc}==\frac{a^2+ac}{a^2+ab+bc+ca}=\frac{a}{a+b}\)

Từ đó \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)

\(=-\left(\frac{a}{c-1}+\frac{b}{a-1}+\frac{c}{b-1}\right)=-\left(\frac{a^2}{ca-a}+\frac{b^2}{ab-b}+\frac{c^2}{bc-c}\right)\)

\(\le-\frac{\left(a+b+c\right)^2}{ab+bc+ca-\left(a+b+c\right)}=-\frac{1}{ab+bc+ca-1}\le-\frac{1}{\frac{\left(a+b+c\right)^2}{3}-1}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}.\)