K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

Ta có: \(A=\left(1+x\right)\left(1+\frac{1}{y}\right)+\left(1+y\right)\left(1+\frac{1}{x}\right)\)

\(=1+\frac{1}{y}+x+\frac{x}{y}+1+\frac{1}{x}+y+\frac{y}{x}\)

\(=\left(x+\frac{1}{2x}\right)+\left(y+\frac{1}{2y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)+2\)

Lại có: \(x,y\in Z^+\) nên ta có:

  • \(x+\frac{1}{2x}\ge\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{\sqrt{2}}\)

  • \(y+\frac{1}{2y}\ge\sqrt{2}\)

Dấu " = " xảy ra  \(\Leftrightarrow y=\frac{1}{\sqrt{2}}\)

  • \(\frac{x}{y}+\frac{y}{x}\ge2\)

Dấu " = " xảy ra \(\Leftrightarrow x=y\)

  • \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\sqrt{x^2+y^2}}{2}}=2\sqrt{2}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Từ trên ta suy ra: \(A\ge3\sqrt{2}+4\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)

Vậy \(A_{Min}=3\sqrt{2}+4\)

28 tháng 1 2020

\(A=\left(x+y\right)+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)+2\ge x+y+\frac{4}{x+y}+4\)

\(\Rightarrow A\ge\left(x+y+\frac{2}{x+y}\right)+\frac{2}{x+y}+4\ge2\sqrt{2}+4+\frac{2}{\sqrt{2\left(x^2+y^2\right)}}=3\sqrt{2}+4\)

28 tháng 1 2020

Đặt: \(a=\sqrt{2+x};b=\sqrt{2-x}\left(a,b\ge0\right)\)

\(\Rightarrow\hept{\begin{cases}a^2+b^2=4\\a^2-b^2=2x\end{cases}}\)

\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a^3-b^3\right)}{4+ab}=\frac{\sqrt{2+ab}\left(a-b\right)\left(a^2+b^2+ab\right)}{4+ab}\)

\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a-b\right)\left(4+ab\right)}{4+ab}=\sqrt{2+ab}\left(a-b\right)\)

\(\Rightarrow A\sqrt{2}=\sqrt{4+2ab}\left(a-b\right)\)

\(\Rightarrow A\sqrt{2}=\sqrt{\left(a^2+b^2+2ab\right)}\left(a-b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Rightarrow A\sqrt{2}=a^2-b^2=2x\)

\(\Rightarrow A=x\sqrt{2}\)

27 tháng 1 2020

1

\(x^2-4mx+4m^2-2=0\)

\(\Leftrightarrow\left(x-2m\right)^2-2=0\)

\(\Leftrightarrow\left(x-2m+\sqrt{2}\right)\left(x-2m-\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2m-\sqrt{2}\\x=2m+\sqrt{2}\end{cases}}\) 

Vậy............

27 tháng 1 2020

\(\hept{\begin{cases}x^2+y^2+\frac{8xy}{x+y}=16\\2x^2-5x+2\sqrt{x+y}-\sqrt{3x-2}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=16-\frac{8xy}{x+y}\\2x^2=5x-2\sqrt{x+y}+\sqrt{3x-2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-3y+6=0\\3x-y+7=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

Vậy pt có \(n_oS=\left\{2;1\right\}\)

NM
1 tháng 4 2021

ta có \(x^2_2=2mx_2-m^2+m-1\)

nên ta có \(2m\left(x_1+x_2\right)-m^2+m-1=10m-1\)

theo vi-et ta có :\(x_1+x_2=2m\Rightarrow3m^2-9m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=3\end{cases}}\)

thay nguowijc lại thấy m=3 thỏa mãn đề bài

28 tháng 1 2020

Đặt \(x=a+1;y=b+1;z=c+1\Rightarrow0\le a,b,c\le2\)và \(a+b+c=3\)

Chứng minh : \(\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3\le36\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a^2+b^2+c^2\right)\le24\). Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\) thì:

\(3a\ge a+b+c=3\Rightarrow2\ge a\ge1\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Theo kết quả bài này thì \(a^2+b^2+c^2\le5\) (em làm thế này cho ngắn, lúc trình bày vô bài làm thì anh ghi cả chứng minh vô luôn nha!). Vậy ta chỉ cần chứng minh: \(a^3+b^3+c^3\le9\).

Ta có: \(a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)

\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)

\(=9\left(a-1\right)\left(a-2\right)+9\le9\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị.