Lê Song Phương

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Song Phương
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta sẽ chứng minh \(1^3+2^3+3^3+...+n^3=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\) bằng quy nạp.   (*)

Thật vậy, với \(n=1\) thì (*) thành \(1^3=\left[\dfrac{1.2}{2}\right]^2\), luôn đúng

Giả sử (*) đúng đến \(n=k\ge1\), khi đó cần chứng minh (*) đúng với \(n=k+1\). Thật vậy, với \(n=k+1\) thì

\(VT=1^3+2^3+3^2+...+k^3+\left(k+1\right)^3\)

\(=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\) (theo giả thiết quy nạp)

\(=\left(k+1\right)^2\left(\dfrac{k^2}{4}+k+1\right)\)

\(=\left(k+1\right)^2\left(\dfrac{k^2+4k+4}{4}\right)\)

\(=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)

\(=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Vậy (*) đúng với \(n=k+1\). Theo nguyên lí quy nạp, (*) được chứng minh.

Như vậy \(1^3+2^3+3^3+...+10^3=\left(\dfrac{10.11}{2}\right)^2=\left(5.11\right)^2=25.11^2⋮11\), ta có đpcm.

a) \(x^2+y^2-4y+3=0\)

\(\Leftrightarrow x^2+\left(y-2\right)^2=1\)

Xét 2TH:

TH1: \(\left\{{}\begin{matrix}x=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x=0\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Vậy có các cặp số nguyên \(\left(1;2\right),\left(3;0\right)\) thỏa mãn đề bài.

b) \(x^2+4y^2-2x+12y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+3\right)^2=9\)

Ta thấy \(2x+3\) là số lẻ nên ta chỉ có 1 TH duy nhất là 

\(\left\{{}\begin{matrix}2y+3=9\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=1\end{matrix}\right.\)

Vậy cặp số nguyên \(\left(1;3\right)\) thỏa mãn ycbt.

Gọi các số nguyên tố liên tiếp tăng dần là \(p_1,p_2,p_3,...\) với \(p_1=2,p_2=3,p_3=5,...\)

Giả sử tồn tại \(m>1\) để với mọi \(n\inℕ^∗\) thì \(p_{n+1}-p_n\le m\) hay \(p_n\ge p_{n+1}-m\) 

Khi đó, với mọi \(n\inℕ^∗\) thì:

\(p_1\ge p_2-m\ge p_3-2m\ge...\ge p_{n+1}-nm\)

Suy ra \(p_{n+1}\ge mn+2\) hay \(m\le\dfrac{p_{n+1}-2}{n}\) với mọi \(n\inℕ^∗\). Tuy nhiên, nếu cho \(n=1\) thì \(m\le\dfrac{p_2-2}{1}=1\), vô lý vì \(m>1\).

Vậy điều giả sử là sai \(\Rightarrow\) đpcm.

 

a) Trong mặt phẳng (SAC), gọi I là giao điểm của AO và MN. Khi đó vì \(MN\subset\left(BMN\right)\) nên I chính là giao điểm của (BMN) và SO.

b) Ta có \(I\in SO\subset\left(SBD\right)\) nên \(I\in\left(SBD\right)\). Trong mặt phẳng (SBD), gọi K là giao điểm của BI và SD. Khi đó vì \(K\in BI\subset\left(BMN\right)\) nên K chính là giao điểm của (BMN) và SD.

 Nếu câu c) mà bạn không muốn dùng trục đẳng phương thì có thể làm cách 2 như sau: Tam giác AHS có đường cao HM nên \(AH^2=AM.AS\)

 Tương tự, ta có \(AM.AS=AE.AB=AF.AC=AH^2\) rồi cũng suy ra được các tứ giác SBEM và BEFC nội tiếp.

 Khi đó \(\widehat{BES}=\widehat{BMS}=\widehat{ACB}=180^o-\widehat{BEF}\) nên \(\widehat{BES}+\widehat{BEF}=180^o\Rightarrow\) S, E, F thẳng hàng

c) Xét đường tròn (I) có đường kính AH \(\Rightarrow\widehat{AEH}=\widehat{AFH}=90^o\).

Tam giác AHB vuông tại H có đường cao HE nên \(AH^2=AE.AB\). Tương tự, ta có \(AE.AB=AF.AC=AH^2\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Tam giác AEF và ACB có:

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\left(cmt\right);\widehat{BAC}\) chung

\(\Rightarrow\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ACB}\)

\(\Rightarrow\) Tứ giác BEFC nội tiếp

 Gọi tâm đường tròn ngoại tiếp tứ giác BEFC là J.

 Khi đó, ta có S thuộc trục đẳng phương AM của (O) và (I), đồng thời S cũng thuộc trục đẳng phương BC của (O) và (J), do đó S thuộc trục đẳng phương EF của (I) và (J) hay S, E, F thẳng hàng. (đpcm)

 

 Có \(u_0=\dfrac{1}{2.0^2-3}=-\dfrac{1}{3};u_1=\dfrac{1}{2.1^2-3}=-1\)

 Ta có \(u_{n+1}=\dfrac{1}{2\left(n+1\right)^2-3}< \dfrac{1}{2n^2-3}=u_n\) với \(n\ge2\)

 Khi đó \(\left\{u_n\right\}\) là dãy giảm với \(n\ge2\). Do đó \(u_n\le u_2=\dfrac{1}{2.2^2-3}=\dfrac{1}{5}\) hay \(\left\{u_n\right\}\) bị chặn trên bởi \(\dfrac{1}{5}\).

 Mặt khác, với \(n\ge2\) thì \(u_n>0\). Do đó \(\left\{u_n\right\}\) bị chặn dưới bởi \(-1\).