K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right).\)(áp dụng bất đẳng thức bunhiacopxki)

\(\Leftrightarrow\left(a+b+c\right)^2\le3.64\Rightarrow\left(a+b+c\right)\le8\sqrt{3}\)

Lại có \(\left(ab+bc+ac\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\)(bất đẳng thức bunhiacopxki)

\(\Leftrightarrow ab+bc+ac\le a^2+b^2+c^2=64\)

Khi đó \(P=ab+bc+ca+a+b+c\le64+8\sqrt{3}\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c\\a^2+b^2+c^2=64\end{cases}\Leftrightarrow}a=b=c=\frac{8\sqrt{3}}{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 4 2023

Lời giải:
Áp dụng BĐT Cô-si:

$a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab$

$b^2+c^2\geq 2bc$

$c^2+a^2\geq 2ac$

Cộng theo vế các BĐT trên ta được:

$2(a^2+b^2+c^2)\geq 2(ab+bc+ac)$

$\Rightarrow ab+bc+ac\leq a^2+b^2+c^2=27$

Vậy GTLN của $P$ là $27$
 

AH
Akai Haruma
Giáo viên
31 tháng 1

Lời giải:

Áp dụng BĐT AM-GM:

\(P=\frac{2a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\\ =\frac{2a}{\sqrt{(a+b)(a+c)}}+\frac{b}{\sqrt{(b+c)(b+a)}}+\frac{c}{\sqrt{(c+a)(c+b)}}\)

\(\leq \frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{4(b+c)}+\frac{b}{b+a}+\frac{c}{4(c+b)}+\frac{c}{c+a}\)

\(=(\frac{a}{a+b}+\frac{b}{b+a})+(\frac{a}{a+c}+\frac{c}{a+c})+\frac{1}{4}(\frac{b}{b+c}+\frac{c}{b+c})=1+1+\frac{1}{4}=\frac{9}{4}\)

Vậy $P_{\max}=\frac{9}{4}$

3 tháng 6 2020

Ta có: \(a^2-ab+3b^2+1=\left(a^2-2ab+b^2\right)+ab+\left(b^2+1\right)+b^2\)

\(=\left(a-b\right)^2+ab+\left(b^2+1\right)+b^2\ge ab+2b+b^2\)

\(=b\left(a+b+2\right)\Rightarrow\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{1}{\sqrt{b\left(a+b+2\right)}}\)(1)

Tương tự: \(\frac{1}{\sqrt{b^2-bc+3c^2+1}}\le\frac{1}{\sqrt{c\left(b+c+2\right)}}\)(2); \(\frac{1}{\sqrt{c^2-ca+3a^2+1}}\le\frac{1}{\sqrt{a\left(c+a+2\right)}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3) và sử dụng AM - GM kết hợp liên tục BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta được:

\(P\le\frac{1}{\sqrt{b\left(a+b+2\right)}}+\frac{1}{\sqrt{c\left(b+c+2\right)}}+\frac{1}{\sqrt{a\left(c+a+2\right)}}\)

\(=\Sigma\frac{2}{\sqrt{4b\left(a+b+2\right)}}\)\(\le\Sigma\left(\frac{1}{4b}+\frac{1}{a+b+2}\right)\)(AM - GM)

\(=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left(\frac{1}{a+b+2}\right)\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\text{​​}\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}\right)+\frac{1}{2}\right]\)

\(\le\frac{3}{4}+\text{​​}\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\text{​​}\Sigma\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\right]\)

\(=\frac{3}{4}+\text{​​}\left[\frac{3}{8}+\text{​​}\frac{1}{8}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\le\frac{3}{4}+\frac{3}{8}+\frac{3}{8}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

3 tháng 6 2020

Dòng thứ 10 sửa lại cho mình là \(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\Sigma\left[\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{2}\right)\right]\)

Do olm có lỗi là mỗi lần bấm dấu ngoặc là số nó tự động nhảy ra ngoài

1 tháng 7 2020

\(a^4+b^4+a^4+a^4\ge4\sqrt[4]{a^{12}b^4}=4a^3b\)

\(a^4+b^4+b^4+b^4\ge4\sqrt[4]{a^4b^{12}}=4ab^3\)

\(\Rightarrow4\left(a^4+b^4\right)\ge4\left(a^3b+ab^3\right)\Rightarrow a^4+b^4\ge a^3b+ab^3\)

\(F=\Sigma\frac{ab}{a^4+b^4+ab}\le\Sigma\frac{ab}{a^3b+ab^3+ab}=\Sigma\frac{1}{a^2+b^2+1}=\Sigma\frac{2}{2a^2+2b^2+2}\)

\(\le\Sigma\frac{1}{ab+a+b}\)

Đến đây bí :( 

23 tháng 4 2022

22 tháng 1 2020

Bài toán quy về 2 bài toán nhỏ hơn!

Cho các số dương ab + bc +ca = 1. 

a) Tìm Max: \(M=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

(Lời giải tại: Câu hỏi của Nguyễn Linh Chi. Bài làm của anh Thắng, trong lời giải có phần giống với đề bên trên.)

b) Tìm Min: \(N=a^2+28b^2+28c^2\)

Có: \(N=\frac{1}{4}\left(2a-7b-7c\right)^2+\frac{63}{4}\left(b-c\right)^2+7\left(ab+bc+ca\right)\ge7\left(ab+bc+ca\right)=7\)

Từ đó tìm được \(P\le\frac{9}{4}-7=-\frac{19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

2 tháng 6 2020

Với ab + bc + ca = 1 và áp dụng BĐT AM - GM, ta được:

\(\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)\(\frac{2a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{\frac{2a}{a+b}+\frac{2a}{a+c}}{2}+\frac{\frac{2b}{a+b}+\frac{b}{2\left(b+c\right)}}{2}+\frac{\frac{2c}{a+c}+\frac{c}{2\left(b+c\right)}}{2}\)

\(=\frac{\frac{2\left(a+b\right)}{a+b}+\frac{2\left(a+c\right)}{a+c}+\frac{b+c}{2\left(b+c\right)}}{2}=\frac{2+2+\frac{1}{2}}{2}=\frac{9}{4}\)(*)

Mặt khác, cũng theo AM - GM, ta có:

 \(\frac{a^2}{2}+\frac{49b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49b^2}{2}}=7ab\)(1)

\(\frac{a^2}{2}+\frac{49c^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{49c^2}{2}}=7ac\)(2)

\(\frac{7}{2}\left(b^2+c^2\right)\ge\frac{7}{2}.2\sqrt{b^2c^2}=7bc\)(3)

Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:

\(\frac{2a^2+56b^2+56c^2}{2}\ge7\left(ab+bc+ca\right)=7\)

hay \(a^2+28b^2+28c^2\ge7\)(**)

Từ (*) và (**) suy ra \(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}-a^2-28b^2-28c^2\)

\(\le\frac{9}{4}-7=\frac{-19}{4}\)

Đẳng thức xảy ra khi \(a=\frac{7}{\sqrt{15}};b=c=\frac{1}{\sqrt{15}}\)

27 tháng 3 2019

Ta có: \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c.1+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\frac{ab}{c\left(b+c\right)+a\left(b+c\right)}}=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{a}{a+c}.\frac{b}{b+c}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)( bđt Cosi)

Tương tự như trên: \(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right);\sqrt{\frac{ac}{b+ac}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{c}{b+c}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{a}{a+b}+\frac{c}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}\right)=\frac{3}{2}\)

"=" Xảy ra khi và chỉ khi:

\(\frac{a}{a+c}=\frac{b}{b+c}\Leftrightarrow a\left(b+c\right)=b\left(a+c\right)\Leftrightarrow a=b\)

\(\frac{a}{a+b}=\frac{c}{b+c}\Leftrightarrow a=c\)

\(\frac{c}{a+c}=\frac{b}{a+b}\Leftrightarrow b=c\)

\(a+b+c=1\)

Từ các điều trên ta có đc: \(a=b=c=\frac{1}{3}\)

Vậy GTLN của P=3/2 khi và chỉ khi a=b=c=1/3

24 tháng 2 2020

Ta sẽ chứng minh:\(P\le\frac{5}{8}\Leftrightarrow5-8P=5+8abc-8\left(ab+bc+ca\right)\ge0\)

Ta có: \(5-8P=\frac{4ab\left[4\left(a+2bc-b-c\right)^2+\left(2c-1\right)^2\right]+c\left(2b-1\right)^2\left[4\left(a+b-c\right)^2+1\right]}{4ab+c\left(2b-1\right)^2}\ge0\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

30 tháng 5 2020

Theo nguyên lý Dirichlet, trong ba số 2a - 1; 2b - 1; 2c - 1 tồn tại ít nhất hai số cùng dấu

Giả sử \(\left(2a-1\right)\left(2b-1\right)\ge0\Leftrightarrow4ab-2a-2b+1\ge0\)

\(\Leftrightarrow4abc\ge2ac+2bc-c\Leftrightarrow2abc\ge ac+bc-\frac{c}{2}\)

 Khi đó thì\(P=ab+bc+ca-2abc+abc\)\(\le ab+bc+ca-ac-bc+\frac{c}{2}+abc=ab+abc+\frac{c}{2}\)

\(\le\frac{a^2+b^2}{2}+abc+\frac{c}{2}=\frac{a^2+b^2+c^2+2abc}{2}-\frac{1}{2}\left(c^2-c+\frac{1}{4}\right)\)\(+\frac{1}{8}\)

\(=\frac{5}{8}-\frac{1}{2}\left(c-\frac{1}{2}\right)^2\le\frac{5}{8}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)