K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2016

Ta có

x2 + y2 + z2 + 3\(\ge\)2(x + y + z)

<=> (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1)\(\ge\)0

<=> (x - 1)2 + (y - 1)2 + (z - 1)2 \(\ge\)0 (đúng)

=> ĐPCM

7 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{z^2}+\dfrac{z^3}{x^2}\right)\left(x+y+z\right)\ge\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\right)^2\)

Cần chứng minh \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\)

Dễ thấy;\(VT=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

BĐT được chứng minh

\("="\Leftrightarrow x=y=z\)

2 tháng 8 2016

a.ta có:

\(x^2+y^2+z^2-\left(xy+yz+zx\right)\)

\(=\frac{1}{2}\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)

vì \(\left(x-y\right)^2\ge0,\left(y-z\right)^2\ge0,\left(z-x\right)^2\ge0\)

do đó : 

\(x^2+y^2+z^2\ge xy+yz+zx\)

dấu = xảy ra khi và chỉ khi x-y-z

 

2 tháng 8 2016

b. ta có:

\(x^2+y^2+z^2-\left(2xy-2zx+2yz\right)\)

\(=x^2+y^2+z^2-2xy-2zx+2yz\)

\(=\left(x-y+z\right)^2\ge0\)

do đó \(x^2+y^2+z^2\ge2xy-2xz+2yz\)

27 tháng 1 2018

xét hiệu là ra bạn ạ

6 tháng 7 2016

  Áp dụng bất đẳng thức bunhiacopxki :

\(\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2.\)

<=> \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)(đpcm)

Dấu = khi x=y=z

7 tháng 7 2016

VT=\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy.\left(x+y+z\right)\)

\(=\left(x+y\right)^2-\left(x+y\right).z+z^2-3xy\left(\text{vì }x+y+z=1\right)\)

\(=x^2+2xy+y^2-xz-yz+z^3-3xy\)

\(=x^2+y^2+z^2-xy-yz-xz\)

\(=\frac{1}{2}.\left(2x^2+2y^2+2z^2-2xy-2yz-2xz\right)\)

\(=\frac{1}{2}.\left[\left(x^2-2xy-y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)\right]\)

\(=\frac{1}{2}.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)=VP

=>dpcm

7 tháng 7 2016

Ta có : \(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)

\(=x+y+z\left(x^2+y^2+z^2+2xy+xz+yz\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=x^2+y^2+z^2-xy-yz-xz=\frac{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2xz+x^2\right)}{2}=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)