K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

Giả sử tồn tại các số nguyên x,y thảo mãn \(x^4+y^3+4=0\) \(\left(1\right)\)

Ta có: \(\left(1\right)\) \(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x+2\right)=-y^3\)

Trước tiên ta nhận xét rằng x phải là một số lẻ, bởi ngược lại nếu x là một số chẵn thì \(x^4+4=-y^3\) là lập phương của một số chẵn, nhưng \(x^4+4\) không chia hết cho 8 với mọi số nguyên x ( vô lí ).

Vậy x là một số lẻ, suy ra y cũng là một số lẻ.

Đặt \(d=\left(x^2-2x+2,x^2+2x+2\right)\)

Ta có: \(4x=\left[\left(x^2+2x+2\right)-\left(x^2-2x+2\right)\right]⋮d\)

Mặt khác d là số lẻ ( vì \(-y^3⋮d\)  và y là số lẻ ), dẫn đến \(\left(4,d\right)=1\) và do đó \(x⋮d\)

Suy ra \(2⋮d\) nên \(d=1\) ( vì d lẻ )

Tóm lại, hai số nguyên \(x^2-2x+2\) và \(x^2+2x+2\) là hai số nguyên tố cùng nhau, có tích là lập phương của một số nguyên nên mỗi số là lập phương của một số nguyên.

Đặt:

\(x^2-2x+2=a^3,x^2+2x+2=b^3\) với \(a,b\inℤ\)

Suy ra \(\left(x-1\right)^2=\left(a-1\right)\left(a^2+a+1\right)\)

\(\left(x+1\right)^2=b^3-1=\left(b-1\right)\left(b^2+b+1\right)\)

Do đó: \(a-1\ge0,b-1\ge0\)

Gọi \(d_1\) là ước chung lớn nhất của \(a-1\) và \(a^2+a=1\) thì \(3a=\left[\left(a^2+a+1\right)-\left(a-1\right)^2\right]⋮d_1\)

Mà \(\left(a,d_1\right)=1\) ( vì \(d_1\) là ước của \(a-1\) ) nên \(3⋮d_1\) )

Do đó: \(d_1\in\left\{1;3\right\}\)

Tương tự gọi \(d_2\) là ước chung lớn nhất của \(b-1\) và \(b^2+b+1\) thì \(d_2\in\left\{1;3\right\}\)

Chú ý rằng nếu \(d_1=d_2=3\) thì \(\left(x-1\right)^2\) và \(\left(x+1\right)^2\) đều chia hết cho 3

Suy ra \(2=\left(x+1\right)-\left(x-1\right)\) chia hết cho 3 ( vô lí )

Vì vậy trong hai số \(d_1,d_2\) phải có một số bằng 1

+ Nếu \(d_1=1\) thì khi đó \(a-1\) và \(a^2+a+1\) là hai số nguyên tố cùng nhau có tích là một số chính phương nên cả 2 số đó đồng thời là số chính phương.

Đặt \(a^2+a+1=m^2\) thì

\(4m^2=4\left(a^2+a=1\right)=\left(2a+1\right)^2+3\)

Do đó \(\left(2m-2a-1\right)\left(2m+2a+1\right)=3\)

TH1: \(2m-2a-1=1,2m+2a+1=3\) thì \(a=0\) ( vô lí vì phương trình \(x^2-2x+2\) không cs nghiệm nguyên )

TH2: \(2m-2a-1=3,2m+2a+1=1\) thì \(a=-1\) ( vô lí vì phương trình \(x^2-2x+2=-1\)  không cs nghiệm nguyên )

+ Nếu \(d_2=1\) làm tương tự ta không tìm đc x,y thỏa mãn.

Vậy không tồn tại các số nguyên x,y thỏa mãn đề bài.

7 tháng 6 2016

xét ddoomhf dư

NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

29 tháng 1 2020

Ta có: \(4^x.4^y.4^z=4^{x+y+z}=4^0=1\)

Áp dụng BĐT cô - si cho 4 số dương:

\(3+4^x=1+1+1+4^x\ge4\sqrt[4]{4^x}\)\(\Rightarrow\sqrt{3+4^x}\ge2\sqrt{\sqrt[4]{4^x}}=2\sqrt[8]{4^x}\)

Tương tự ta có: \(\sqrt{3+4^y}\ge2\sqrt[8]{4^y}\);\(\sqrt{3+4^z}\ge2\sqrt[8]{4^z}\)

\(VT=\text{Σ}_{cyc}\sqrt{3+4^x}=2\left[\sqrt[8]{4^x}+\sqrt[8]{4^y}+\sqrt[8]{4^z}\right]\)

\(\ge2.3\sqrt[3]{\sqrt[8]{4^x.4^y.4^z}}=6\)

(Dấu "="\(\Leftrightarrow x=y=z=0\))

29 tháng 1 2020

2k7 à ;giỏi wá

19 tháng 11 2015

tick mình xong mình giải cho