K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 3 2021

Với $a,b,c>0$ thì $a^3+b^3+3abc> ab(a+b+c)$ chứ không có dấu "=" nhé bạn. Còn về cách làm thì bạn Trương Huy Hoàng đã làm rất chi tiết rồi.

10 tháng 3 2021

a3 + b3 + 3abc \(\ge\) ab(a + b + c)

\(\Leftrightarrow\) a3 + b3 + 3abc - a2b - ab2 - abc \(\ge\) 0

\(\Leftrightarrow\) a3 + b3 + 2abc - a2b - ab2 \(\ge\) 0

\(\Leftrightarrow\) a2(a - b) - b2(a - b) + 2abc \(\ge\) 0

\(\Leftrightarrow\) (a - b)(a2 - b2) + 2abc \(\ge\) 0

\(\Leftrightarrow\) (a - b)2(a + b) + 2abc \(\ge\) 0 (luôn đúng với mọi a, b, c > 0)

Chúc bn học tốt!

2 tháng 10 2019

Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:

\(4a^3+4b^3\ge\left(a+b\right)^3\)\(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).

Cộng từng vế 3 bất đẳng thức trên ta được:

\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)

=> đpcm.

2 tháng 11 2019

\(a^3+a^3+b^3\ge3\sqrt[3]{a^6b^3}=3a^2b\)

\(b^3+b^3+a^3\ge3b^2a\)

\(\Rightarrow3\left(a^3+b^3\right)\ge3\left(a^2b+b^2a\right)\Leftrightarrow\left(a^3+b^3\right)\ge\left(a^2b+b^2a\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

31 tháng 5 2020

Ta biến đối tương đương:

\(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow4\left(a+b\right)\left(a^2-ab+b^2\right)\Leftrightarrow\left(a+b\right)\left(a+b\right)^2\)

\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)( chia hia vế cho số dương a+b)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\) là đúng.

31 tháng 5 2020

cảm ơn bạn

10 tháng 3 2021

Biến đổi \(4\left(a^3+b^3\right)-\left(a+b\right)^3=3a^3-3a^2b-3ab^2+3b^3=3a^2\left(a-b\right)-3b^2\left(a-b\right)=\left(3a^2-3b^2\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)^2\ge0\forall a,b>0\).

Từ đó ta có \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)

10 tháng 3 2021

Với a, b>0 các bn nha

20 tháng 1 2020

Có: \(VT-VP=\frac{\left(b^2+c^2-2a^2\right)^2+\left(b-c\right)^2\left(\Sigma_{cyc}a^2+3\Sigma_{cyc}ab\right)}{2a+b+c}\ge0\)

Done!

5 tháng 5 2019

\(C=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1\ge\frac{3}{2}+1+1+1\)

\(\Leftrightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(\Leftrightarrow2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)

\(\Leftrightarrow\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\left(^∗\right)\)

Áp dụng bđt Cauchy :

\(\hept{\begin{cases}\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\\\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\ge3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}\end{cases}}\)

Nhân vế của các bđt ta được :

\(VT\left(^∗\right)\ge3\sqrt[3]{\left(b+c\right)\left(c+a\right)\left(a+b\right)}\cdot3\sqrt[3]{\frac{1}{\left(b+c\right)\left(c+a\right)\left(a+b\right)}}=9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

5 tháng 5 2019

đặt b + c = x ; c + a  = y ; a + b = z

\(\Rightarrow\)a + b + c = \(\frac{x+y+z}{2}\)

\(\Rightarrow a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

\(\Rightarrow C=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(C=\frac{1}{2}.\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\ge\frac{1}{2}\left(6-3\right)=\frac{3}{2}\)

22 tháng 8 2023

Để chứng minh hằng đẳng thức a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a) = (a+b+c)^3, ta sẽ sử dụng công thức khai triển đa thức.

Theo công thức khai triển đa thức, ta có:

(a+b+c)^3 = a^3 + b^3 + c^3 + 3(a+b)(b+c)(c+a)

Vậy, hằng đẳng thức được chứng minh.

* Chứng minh : 

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) (*) 

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( luôn đúng ) 

Do đó : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) \(\left(1\right)\)

* Chứng minh : 

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\) đến đây chứng minh giống chỗ (*) 

... 

Do đó : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) ( đpcm )