K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Áp dụng BĐT AM - GM ta có :
\(\frac{1}{x+1}\ge1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{y+1}+\frac{z}{z+1}\)

\(\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) . Tương tự ta cũng có :

\(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}};\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

Nhân theo vế 3 BĐT trên tra có :

\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{xyz}{\left(\left(x+1\right)\left(y+1\right)\left(z+1\right)\right)^2}}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)

 Dấu " = " xảy ra khi \(x=y=z=\frac{1}{2}\)

Chúc bạn học tốt !!!

27 tháng 4 2021

Ta có: \(xyz=1\)=>\(xy=\frac{1}{z}\)
Theo BĐT cosy, ta có: \(x+y+1\ge3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{3\sqrt[3]{z}}\)
tương tự:\(y+z+1\ge3\sqrt[3]{\frac{1}{x}}=\frac{3}{\sqrt[3]{x}}\)
               \(z+x+1\ge3\sqrt[3]{\frac{1}{y}}=\frac{3}{\sqrt[3]{y}}\)
              => \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{x}}{3}+\frac{\sqrt[3]{y}}{3}=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)
Áp dụng BĐT trên lần nữa ta được \(Q\le\frac{3\sqrt[3]{\sqrt[3]{xyz}}}{3}=\frac{3}{3}=1\)
Vậy DTLN của Q=1
dấu "=" xảy ra khi x=y=z=1

NV
6 tháng 4 2022

\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)

\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}+\dfrac{b}{\sqrt{ab+bc+ca+b^2}}+\dfrac{c}{\sqrt{ab+bc+ca+c^2}}\)

\(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(P=\sqrt{\dfrac{2a}{a+b}.\dfrac{2a}{a+c}}+\sqrt{\dfrac{2b}{a+b}.\dfrac{b}{2\left(b+c\right)}}+\sqrt{\dfrac{2c}{c+a}.\dfrac{c}{2\left(c+b\right)}}\)

\(P\le\dfrac{1}{2}\left(\dfrac{2a}{a+b}+\dfrac{2a}{a+c}+\dfrac{2b}{a+b}+\dfrac{b}{2\left(b+c\right)}+\dfrac{2c}{c+a}+\dfrac{c}{2\left(c+b\right)}\right)=\dfrac{9}{4}\)

\(P_{max}=\dfrac{9}{4}\) khi \(\left(a;b;c\right)=\left(\dfrac{7}{\sqrt{15}};\dfrac{1}{\sqrt{15}};\dfrac{1}{\sqrt{15}}\right)\) hay \(\left(x;y;z\right)=\left(\dfrac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)

 

21 tháng 2 2017

x,y,z là số thực à khó đấy số dương thì mk còn làm đc 

chứ số thực mk chịu

21 tháng 2 2017

Biến đổi tương đương ta CM được BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\)

Ta có: \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}=\frac{z}{xyz\left(x+y+z\right)}\)

CM tương tự với các phân thức còn lại

Cộng vế theo vế các BĐT đó ta được:

\(A\le\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)

Vậy Max A=1 <=> x=y=z=1

15 tháng 7 2017

từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)

Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3

18 tháng 9 2016

\(\frac{1}{x+1}\ge\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)=\frac{y}{y+1}+\frac{z}{z+1}\ge\frac{2\sqrt{yz}}{\sqrt{\left(y+1\right).\left(z+1\right)}}\)

Tương tự : \(\frac{1}{y+1}\ge\frac{x}{x+1}+\frac{z}{z+1}\ge\frac{2\sqrt{xz}}{\sqrt{\left(x+1\right)\left(z+1\right)}}\)

\(\frac{1}{z+1}\ge\frac{x}{x+1}+\frac{y}{y+1}\ge\frac{2\sqrt{xy}}{\sqrt{\left(x+1\right)\left(y+1\right)}}\)

Nhân các vế lại với nhau : \(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\Rightarrow xyz\le\frac{1}{8}\)

Vậy Max F = 1/8 <=> x = y = z = 1/2

15 tháng 2 2018

áp dụng bdt cô si dạng " Rei' ta có

\(x+y+1\le3\sqrt[3]{xy}\)

từ đề bài ta suy ra  \(xy=\frac{1}{z}\Leftrightarrow\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)

suy ra   \(3\sqrt[3]{xy}=3\sqrt[3]{\frac{1}{z}}=\frac{3}{\sqrt[3]{z}}\)

áp dụng cho các BDT còn lại

\(3\sqrt[3]{yz}=\frac{3}{\sqrt[3]{x}};3\sqrt[3]{xz}=\frac{3}{\sqrt[3]{y}}\)

suy ra  \(Q\le\frac{1}{\frac{3}{\sqrt[3]{z}}}+\frac{1}{\frac{3}{\sqrt[3]{y}}}+\frac{1}{\frac{3}{\sqrt[3]{x}}}=\frac{\sqrt[3]{z}}{3}+\frac{\sqrt[3]{y}}{3}+\frac{\sqrt[3]{x}}{3}\) Nhân ngược lên 

vậy 

\(Q\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{3}\)

áp dụng BDT cô si dạng "Shinra" ta có  , đặt tử số = S

\(S=\sqrt[3]{z}+\sqrt[3]{y}+\sqrt[3]{x}\ge3\sqrt[3]{\sqrt[3]{xyz}}\)

có xyz=1 vậy    \(3\sqrt[3]{\sqrt[3]{xyz}}=3\)

 suy ra \(S\ge3\) ( ngược dấu loại )

cách 2 áp dụng BDT cosi dạng đặc biệt " Gedou rinne Tensei " ta được

lưu ý " Gedou Rinne Tensei" chỉ dùng lúc nguy cấp + tán gái + thể hiện  và chỉ lừa được những thằng ngu 

không nên dùng trc mặt thầy cô giáo :) .

\(\sqrt[3]{x.1.1}\le\frac{\left(x+2\right)}{3}\)

tương tự vs các BDt còn lại và đặt tử số = S ta được

\(S\le\frac{\left(x+2+y+2+z+2\right)}{3}=\frac{\left(x+y+z+6\right)}{3}=3\) 

thay \(S\le3\) vào biểu thức ta được

\(Q\le\frac{3}{3}=1\)

vây Max Q là 1 dấu = xảy ra khi x=y=z=1

16 tháng 2 2018

Đệch, nói luôn côsi 3 số cho r

Cái này ae nào ko hiểu msg tui, tui dùng điểm rơi giải đc r, dễ hiểu hơn

21 tháng 2 2020

a) + \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+1\ge\left(x+y\right)\left(2xy-xy\right)+xyz=xy\left(x+y+z\right)\)

Dấu "=" \(\Leftrightarrow x=y\)

+ Tương tự : \(y^3+z^3+1\ge yz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow y=z\)

\(z^3+x^3+1\ge xz\left(x+y+z\right)\). Dấu "=" \(\Leftrightarrow x=z\)

Do đó: \(A\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{zx\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=1\)

Dấu "=" \(\Leftrightarrow x=y=z=1\)

b) Bn đã từng hỏi và cũng là mk trả lời hehe

21 tháng 2 2020

tại mình không làm được ý a) nên mình sao chép cả bài luôn

27 tháng 12 2016

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\\ \)

\(\frac{x}{x+1}=\frac{x+1-1}{x+1}=1-\frac{1}{x+1}\) tương tự với y,z

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

=> ta đi tìm GTNN của (..)\(A=\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

đặt x+1=a;y+1=b;z+1=c nội suy cho đỡ đau đầu a+b+c=4

\(B=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) 

\(a+b+c\ge3\sqrt[3]{abc}\)(*)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\)(*)

(*).(**)\(\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{\left(a+b+c\right)}\)

\(\Rightarrow B\ge\frac{9}{4}\Rightarrow A\ge\frac{9}{4}\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)

DS: \(P_{max}=\frac{3}{4}\) đẳng thức khi a=b=c=> x=y=z=1/3

21 tháng 8 2017

hay was

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)