K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Ta có

\(\left\{{}\begin{matrix}\dfrac{3a}{ab+3a+6}=\dfrac{3ac}{abc+3ac+6c}=\dfrac{3ac}{24+3ac+6c}=\dfrac{ac}{8+ac+2c}\\\dfrac{4b}{bc+4b+12}=\dfrac{4ab}{abc+4ab+12a}=\dfrac{4ab}{24+4ab+12a}=\dfrac{ab}{6+ab+3a}=\dfrac{abc}{6c+abc+3ac}=\dfrac{24}{6c+24+3ac}=\dfrac{8}{2c+8+ac}\\\dfrac{2c}{ac+2c+8}\end{matrix}\right.\)

=> \(\dfrac{ac}{ac+2c+8}+\dfrac{2c}{ac+2c+8}+\dfrac{8}{ac+2c+8}=\dfrac{ac+2c+8}{ac+2c+8}=1\)

=>A=1

18 tháng 6 2017

??????????????????????????????????

/????????????????????????????????????//

= ?????

18 tháng 6 2017

Wendy bạn không hiểu đề ak hay là...........................ko làm đc ^-^

NV
30 tháng 12 2021

\(\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{abc+ab+a}+\dfrac{2c}{ac+2c+abc}\)

\(=\dfrac{a}{ab+a+2}+\dfrac{ab}{2+ab+a}+\dfrac{2}{a+2+ab}\)

\(=\dfrac{ab+a+2}{ab+a+2}=1\)

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

27 tháng 12 2020

M\(=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

 

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2bc}{b\left(ac+2c+2\right)}\)

M = \(\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{abc+2bc+2b}\)

M=\(\dfrac{1}{b+1+bc}+\dfrac{b}{b+1+bc}+\dfrac{2bc}{2+2bc+2b}\)

M = \(\dfrac{1+b}{b+1+bc}+\dfrac{2bc}{2\left(1+bc+b\right)}\)

M = \(\dfrac{1+b}{b+1+bc}+\dfrac{bc}{b+1+bc}=\dfrac{1+b+bc}{b+1+bc}=1\)

29 tháng 6 2021
Sao ngu vậy bn
2 tháng 4 2017

Thay abc = 2 vào biểu thức A ta được:

\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc\cdot c}{ac+abc+abc}\\ A=\dfrac{1}{b+1+bc}+\dfrac{b}{bc+b+1}+\dfrac{bc}{1+bc+b}\\ A=\dfrac{1+b+bc}{1+b+bc}\\ A=1\)

22 tháng 12 2017

Hàng thứ 2 phải sửa lại như vậy:

\(A=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc.c}{ac+abc.c+abc}\)

26 tháng 1 2022

nhân cả vế với abc ta có điều cần chứng minh

\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\ge\dfrac{ab+bc+ac}{2}\)

VT\(\ge\)\(\dfrac{\left(bc+ac+ab\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{bc+ac+ab}{2}\)

=>(đpcm)

mấu chốt nằm ở đoạn chứng minh\(\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ac\right)^2}{b\left(a+c\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\) 

chỉ cần chứng minh được \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)sau đó áp dụng để chứng minh cái kia thôi cái này bạn thử tự chứng minh nhé

 

 

26 tháng 1 2022

 

 

10 tháng 3 2021

Áp dụng bất đẳng thức \(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) với x, y, z > 0 ta có:

\(\dfrac{1}{2a+b}+\dfrac{1}{2b+c}+\dfrac{1}{2c+a}=\dfrac{1}{9}\left(\dfrac{9}{a+a+b}+\dfrac{9}{b+b+c}+\dfrac{1}{c+c+a}\right)\le\dfrac{1}{9}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\right)=\dfrac{1}{9}.3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}\).

3 tháng 8 2018

de dung ko vay ban