K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

a,b,c >0 thì:

\(a+b\ge2\sqrt{ab}\Rightarrow\frac{\sqrt{ab}}{a+b}\le\frac{1}{2}.\)

\(b+c\ge2\sqrt{bc}\Rightarrow\frac{\sqrt{bc}}{b+c}\le\frac{1}{2}.\)

\(c+a\ge2\sqrt{ac}\Rightarrow\frac{\sqrt{ac}}{c+a}\le\frac{1}{2}.\)

Nhân từng vế của 3 BĐT trên ta có:

\(\frac{\sqrt{ab}\sqrt{bc}\sqrt{ca}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=B\le\frac{1}{8}\)

Vậy GTLN của B = 1/8 khi a=b=c.

21 tháng 3 2021

Dễ dàng chứng minh được: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)

Ta có:

\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)

Áp dụng (1), ta được:

\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)

\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)

\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)

Chúng minh tương tự, ta được:

\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)

Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).

\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)

Từ (2), (3) và (4), ta được:

\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)

\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)

\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)

\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)

\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)

Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)

20 tháng 8 2016

Áp dụng BĐT Bunhiacopxki:

\(\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{ac}+\sqrt{ab}\)

\(\Rightarrow\)\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\)\(\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}\)=\(\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(1)

Tương tự ta có: \(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(2)

\(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)(3)

Cộng theo vế của (1);(2)&(3) ta đc:

A\(\le1\)

Dấu''='' xảy ra\(\Leftrightarrow\)a=b=c

 

21 tháng 8 2016

Thanks nha, cách giải hay quớ

 

25 tháng 8 2016

CÓ: \(a^2+b^2=c^2.\)Nên ta có:
\(P=\frac{\left(a+b\right)\left(a+\sqrt{a^2+b^2}\right)\left(b+\sqrt{a^2+b^2}\right)}{ab\sqrt{a^2+b^2}}\)
\(=\frac{a+b}{\sqrt{a^2+b^2}}.\frac{a+\sqrt{a^2+b^2}}{a}.\frac{b+\sqrt{a^2+b^2}}{b}\)
\(=\left(\sqrt{\frac{a^2}{a^2+b^2}}+\sqrt{\frac{b^2}{a^2+b^2}}\right).\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\left(1+\sqrt{\frac{a^2+b^2}{a^2}}\right)\).
Đặt: \(x^2=\frac{a^2}{a^2+b^2};y^2=\frac{b^2}{a^2+b^2}\Rightarrow x^2+y^2=1\). Ta có:
\(P=\left(x+y\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=x+y+\frac{1}{x}+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}+2\)\(\ge4\sqrt{x.y.\frac{1}{x}.\frac{1}{y}.\frac{x}{y}.\frac{y}{x}}+2=6.\)

Vậy GTNN của P = 6.Dấu bằng xảy ra khi x = y =1 hay tam giác ABC vuông cân.

25 tháng 8 2016

Min = 6

25 tháng 3 2018

thi hsg co cao khong

25 tháng 3 2018

dang no giong bai bdt vap LHP chuyen nam 2017-2018

8 tháng 4 2023

- Bổ sung điều kiện: \(a,b,c>0\)

Ta chứng minh bất đẳng thức:

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\) (bạn tự chứng minh bằng phép biến đổi tương đương)

Áp dụng bất đẳng thức trên ta có:

\(P=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\le3\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)

\(=6\left(a+b+c\right)=6.3=18\)

\(\Rightarrow P\le\sqrt{18}=3\sqrt{2}\)

Dấu "=" xảy ra khi a=b=c=1.

Vậy \(MinP=\sqrt{18}\)

7 tháng 3 2020

Ồ sorry bạn nhiều, chỗ đấy bị lỗi kĩ thuật rồi, mình sửa lại nhé :

\(M\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

Lại có : \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt{a^3b^3c^3}}{2}=\frac{3}{2}\)

Do đó : \(M\ge\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

7 tháng 3 2020

Ta có : \(\frac{1}{a^3\left(b+c\right)}=\frac{\frac{1}{a^2}}{a\left(b+c\right)}=\frac{\left(\frac{1}{a}\right)^2}{a\left(b+c\right)}\)

Tương tự : \(\frac{1}{b^3\left(a+c\right)}=\frac{\left(\frac{1}{b}\right)^2}{b\left(a+c\right)}\) , \(\frac{1}{c^3\left(a+b\right)}=\frac{\left(\frac{1}{c}\right)^2}{c\left(a+b\right)}\)

Ta thấy : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Áp dụng BĐT Svacxo ta có :

\(M=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^2\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)   \(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vâỵ \(M_{min}=\frac{3}{2}\) tại \(a=b=c=1\)

8 tháng 4 2016

Ta có \(x^3+y^3\ge\frac{1}{4}\left(x+y\right)^3;xy\le\left(\frac{x+y}{2}\right)^2\) với mọi \(x,y>0\)

Kết hợp với giả thiết suy ra :

\(\frac{1}{4}\left(a+b+c\right)^3\le\left(a+b\right)^3+c^3\le4\left(a^3+b^3\right)+c^3\le2\left(a+b+c\right)\left(\frac{\left(a+b+c\right)^2}{4}-2\right)\)

\(\Rightarrow a+b+c\ge4\)

Khi đó sử dựng bất đẳng thức AM-GM ta có :

\(\frac{2a^2}{3a^2+b^2+2a\left(c+2\right)}=\frac{a}{a+c+2+\left(\frac{b^2}{2a}+\frac{a}{2}\right)}\le\frac{a}{a+c+2+2\sqrt{\frac{b^2}{2a}.\frac{a}{2}}}=\frac{a}{a+b+c+2}\)

Và \(\left(a+b\right)^2+c^2\ge\frac{1}{2}\left(a+b+c\right)^2\)

Suy ra \(P\le\frac{a+b+c}{a+b+c+2}-\frac{\left(a+b+c\right)^2}{32}\)

Đặt \(t=a+b+c\ge4,P\le f\left(t\right)=\frac{t}{t+2}-\frac{t^2}{32}\)

Ta có : \(f'\left(t\right)=\frac{2}{\left(t+2\right)^2}-\frac{t}{16}=\frac{32-t\left(t+2\right)^2}{16\left(t+2\right)^2}<0\) với mọi \(t\ge4\)

Suy ra hàm số \(f'\left(t\right)\) nghịch biến trên \(\left(4;+\infty\right)\). Do đó \(P\le f\left(t\right)\le f\left(4\right)=\frac{1}{6}\)

Dấu = xảy ra khi và chỉ khi \(\begin{cases}a=b;a+b=c\\a+b+c=4\end{cases}\) \(\Leftrightarrow a=b=1,c=2\)

Vậy giá trị lớn nhất của P bằng \(\frac{1}{6}\)

3 tháng 11 2016

\(\frac{1}{a-1}+\frac{1}{b-1}+\frac{1}{c-1}=2\)

\(\Leftrightarrow\frac{1}{a-1}=\left(1-\frac{1}{b-1}\right)+\left(1-\frac{1}{c-1}\right)\)

\(\Leftrightarrow\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\)

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a-1}=\frac{b-2}{b-1}+\frac{c-2}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{c-2}{c-1}}\)

Tương tự : \(\frac{1}{b-1}\ge2\sqrt{\frac{a-2}{a-1}.\frac{c-2}{c-1}}\)

\(\frac{1}{c-1}\ge2\sqrt{\frac{b-2}{b-1}.\frac{a-2}{a-1}}\)

Nhân các BĐT theo vế : 

\(\frac{1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\ge\frac{8\left(a-2\right)\left(b-2\right)\left(c-2\right)}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}\)

\(\Leftrightarrow8\left(a-2\right)\left(b-2\right)\left(c-2\right)\le1\Leftrightarrow\left(a-2\right)\left(b-2\right)\left(c-2\right)\le\frac{1}{8}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{5}{2}\)

Vậy maxH = 1/8 <=> a = b = c = 5/2