K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

3. a) \(A=x+\frac{1}{x-1}=x-1+\frac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=3\)

Dấu "=" \(\Leftrightarrow x-1=\frac{1}{x-1}\Leftrightarrow x=2\)

Min \(A=3\Leftrightarrow x=2\)

b) \(B=\frac{4}{x}+\frac{1}{4y}=\frac{4}{x}+4x+\frac{1}{4y}+4y\cdot-4\left(x+y\right)\)

\(\ge2\sqrt{\frac{4}{x}\cdot4x}+2\sqrt{\frac{1}{4y}\cdot4y}-4\cdot\frac{5}{4}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}\frac{4}{x}=4x\\\frac{1}{4y}=4y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

Min \(B=5\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{4}\end{matrix}\right.\)

4. Chắc đề là tìm min???

\(C=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\ge2\sqrt{\left(a+b\right)\cdot\frac{1}{a+b}}+\frac{3}{1}=5\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a+b=\frac{1}{a+b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\frac{1}{2}\)

Min \(C=5\Leftrightarrow a=b=\frac{1}{2}\)

27 tháng 2 2020

1. Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\left(\frac{1}{p-a}+\frac{1}{p-b}\right)+\left(\frac{1}{p-b}+\frac{1}{p-c}\right)+\left(\frac{1}{p-c}+\frac{1}{p-a}\right)\)

\(\ge\frac{4}{2p-a-b}+\frac{4}{2p-b-c}+\frac{4}{2p-a-c}\) \(=\frac{4}{c}+\frac{4}{a}+\frac{4}{b}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" \(\Leftrightarrow a=b=c\)

2. Áp dụng bđt Cauchy ta có :

\(a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b-1+1}{2}=\frac{ab}{2}\) . Dấu "=" \(\Leftrightarrow b-1=1\Leftrightarrow b=2\)

+ Tương tự : \(b\sqrt{a-1}\le\frac{ab}{2}\). Dấu "=" \(\Leftrightarrow a=2\)

Do đó: \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\). Dấu "=" \(\Leftrightarrow a=b=2\)

3 tháng 4 2016

ta sử dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)(cái này bạn có thể dễ dàng chúng minh )

ta có 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)(1)

tương tự ta có 

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\) (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)(3)

cộng theo vế của bđt (1);(2);(3) ta có

\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

hay \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với mọi x,y>0 

Ta có:      \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\)

               \(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

6 tháng 3 2016

áp dụng BĐT 1/x+1/y>=4/x+y ấy

23 tháng 4 2019

                                  Lời giải

Theo đề bài thì \(p=\frac{a+b+c}{2}\Rightarrow p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\)

Tương tự: \(p-b=\frac{c+a-b}{2};p-c=\frac{a+b-c}{2}\)

Ta cần c/m: \(\frac{2}{b+c-a}+\frac{2}{c+a-b}+\frac{2}{a+b-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có: \(VT=\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)+\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\)

\(\ge\frac{4}{2c}+\frac{4}{2a}+\frac{4}{2b}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{\left(đpcm\right)}\)

24 tháng 4 2019

Ta có:\(p-a=\frac{a+b+c}{2}-a=\frac{b+c-a}{2}\Leftrightarrow\frac{1}{p-a}=\frac{2}{b+c-a}\)

Tương tự ta có:

\(\frac{1}{p-b}=\frac{2}{a+c-b}\)

\(\frac{1}{p-c}=\frac{2}{a+b-c}\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=2\left(\frac{1}{a+c-b}+\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel ta có:

\(\frac{1}{b+c-a}=\frac{\left(1+1-1\right)^2}{b+c-a}\ge\frac{1}{b}+\frac{1}{c}-\frac{1}{a}\)

Tương tự,ta có:

\(\frac{1}{a+b-c}\ge\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\)

\(\frac{1}{a+c-b}\ge\frac{1}{a}+\frac{1}{c}-\frac{1}{b}\)

Cộng vế theo vế ta được:

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^{đpcm}\)

27 tháng 11 2019

Áp dungj BĐt Cauchy - Schwarz :
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)

Cộng theo vế và thu gọn ta được :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có : đpcm

Dấu " = " xảy ra khi \(a=b=c\)

27 tháng 11 2019

Ta có

\(P=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)

áp dụng bđt Cauchy-Schwarz ta có

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)

C/m tương tự ta có

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)

\(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\left(3\right)\)

Cộng vế theo vế (1) (2) và (3)   => đpcm

14 tháng 4 2018

Do p là nửa chu vi tam giác nên \(2p=a+b+c\)

Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Dấu "=" xảy ra khi a=b=c.

22 tháng 2 2017

Dễ dàng CM BĐT sau: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b},\forall a,b>0\)

Áp dung: \(\hept{\begin{cases}\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\\\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\\\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{2p-c-a}=\frac{4}{b}\end{cases}}\)

Cộng vế theo vế các BĐT trên => ĐPCM

21 tháng 1 2019

\(1)\)

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+2ab+b^3-ab=a^3+b^3+ab\)

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1}{2}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

\(2)\)

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=\frac{1}{\frac{a+b+c}{2}-a}+\frac{1}{\frac{a+b+c}{2}-b}+\frac{1}{\frac{a+b+c}{2}-c}\)

\(=2\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)\)

Có : \(\hept{\begin{cases}b-a< c\\c-b< a\\a-c< b\end{cases}}\)

\(2\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)>2\left(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) ??? 

21 tháng 1 2019

1.  A = a(a2 + 2b) + b(b2 - a)

A = a3 + 2ab + b3 - ab

A = a3 + ab + b3

A = ( a + b ) ( a2 - ab + b2 ) + ab

A = a2 + b2

Mà ( a - b )2 \(\ge\)0 với mọi a,b

 \(\Rightarrow\)a2 + b2 \(\ge\)2ab \(\Rightarrow\)2 . ( a2 + b2 ) \(\ge\)( a + b )2 = 1 \(\Rightarrow\)( a2 + b\(\ge\)\(\frac{1}{2}\)

\(\Rightarrow\)\(\ge\)\(\frac{1}{2}\)  . Dấu " = " xảy ra \(\Leftrightarrow\)a = b \(\frac{1}{2}\)

20 tháng 2 2018

a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(p=\frac{a+b+c}{2}\right)\)

Tương tự rồi cộng theo vế:

\(2VT\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=2VP\Leftrightarrow VT\ge VP\)

Dấu "=" khi \(a=b=c\)

b)sai đề