K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

WLOG \(a=max\left\{a,b,c\right\}\rightarrow90^o\le\widehat{A}< 180^o\rightarrow cosA\le0\)

Khi đó \(a^2=b^2+c^2-2bc\cdot cosA\ge b^2+c^2\)

\(LHS=\left(a^2+b^2+c^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(=a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{b^2+c^2}{a^2}+\left(b^2+c^2\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+1\)

\(\ge\frac{4a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}+5\)

\(=\frac{a^2}{b^2+c^2}+\frac{b^2+c^2}{a^2}+5+\frac{3a^2}{b^2+c^2}\)

\(\ge2+5+3=10\)

"=" b=c và A=90 hay tam giác ABC vuông cân tại A

5 tháng 4 2017

Bài 3: y hệt bài mình đã từng đăng Câu hỏi của Thắng Nguyễn - Toán lớp 9 - Học toán với OnlineMath- trước mình có ghi lời giải mà lâu ko xem giờ quên r` :)

5 tháng 4 2017

1) Đặt n+1 = k^2

2n + 1 = m^2

Vì 2n + 1 là số lẻ => m^2 là số lẻ => m lẻ 

Đặt m = 2t+1

=> 2n+1 = m^2 = (2t+1)^2

=> 2n+1 = 41^2 + 4t + 1

=> n = 2t(t+1)

=> n là số chẵn

=> n+1 là số lẻ

=> k lẻ 

+) Vì k^2 = n+1

=> n = (k-1)(k+1)

Vì k -1 và k+1 là 2 số chẵn liên tiếp

=> (k+1)(k-1) chia hết cho * 

=> n chia hết cho 8

+) k^2 + m^2 = 3a + 2

=> k^2 và m^2 chia 3 dư 1

=> m^2 - k^2 chia hết cho 3

m^2 - k^2 = a

=> a chia hết cho 3

Mà 3 và 8 là 2 số nguyên tố cùng nhau

=> a chia hết cho 24

2 tháng 9 2020

1 bài BĐT rất hay !!!!!!

BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333

\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)

TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)

=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)

=>    \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)

TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU:   \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)

ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau: 

=>   \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)

=>   \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)

=>   \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

=>   \(S\ge\frac{1}{\sqrt{3}}\)

VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>   \(a=b=c=\sqrt{\frac{1}{27}}\)

28 tháng 7 2020

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Mai Anh ! cậu giỏi quá, cậu nè :33 

6 tháng 9 2020

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

7 tháng 9 2020

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

21 tháng 7 2020

khó vl

21 tháng 7 2020

Theo mình đề chứng minh: \(3Min\left\{\frac{a}{b}+\frac{b}{c}+\frac{c}{a},\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right\}\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

13 tháng 10 2016

Ta có

\(1+\frac{b}{a}=\frac{a+b}{a}\ge2\frac{\sqrt{ab}}{a}\)

\(1+\frac{c}{b}\ge2\frac{\sqrt{bc}}{b}\)

\(1+\frac{a}{c}\ge2\frac{\sqrt{ac}}{c}\)

Nhân vế theo vế ta được

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\ge8\frac{\sqrt{ab.bc.ca}}{abc}=8\)

Dấu = xảy ra khi a = b = c hay tam giác ABC đều

14 tháng 6 2021

BĐT cần CM tương đương:

\(3-VT\ge1\)

\(\Leftrightarrow\frac{a^2+2bc-a\left(b+c\right)}{a^2+2bc}+...\ge1\) (1)

\(VT\left(1\right)=\frac{\left[a^2+2bc-a\left(b+c\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]}+...\)

\(\ge\frac{\left[a^2+2bc-a\left(b+c\right)+b^2+2ca-b\left(c+a\right)+c^2+2ab-c\left(a+b\right)\right]^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\)

\(=\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+2bc\right)\left[a^2+2bc-a\left(b+c\right)\right]+...}\) (2)

Ta cần chứng minh mẫu của (2) \(\le\left(a^2+b^2+c^2\right)^2\)

... Tự biến đổi ra thôi thi ta được 1 biểu thức không âm luôn đúng

=> BĐT trên đúng

=> đpcm

Dấu "=" xảy ra khi: a = b = c