Giúp tôi giải toán và làm văn


Hoàng Thị Thu Huyền Quản lý 16 tháng 8 2017 lúc 10:59
Báo cáo sai phạm

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [M, A] Đoạn thẳng g: Đoạn thẳng [D, M] Đoạn thẳng h: Đoạn thẳng [B, M] Đoạn thẳng i: Đoạn thẳng [C, M] Đoạn thẳng j: Đoạn thẳng [E, G] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [A, D] Đoạn thẳng n: Đoạn thẳng [G, F] Đoạn thẳng p: Đoạn thẳng [H, F] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng r: Đoạn thẳng [C, B] O = (5.56, -3.6) O = (5.56, -3.6) O = (5.56, -3.6) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c M = (4.29, -4.84) M = (4.29, -4.84) M = (4.29, -4.84) Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm H: Trung điểm của g Điểm H: Trung điểm của g Điểm H: Trung điểm của g

Cô hướng dẫn nhé.

Gọi E, F, G, H lần lượt là trung điểm của MA, MB, MC và MD.

Theo tính chất đường trung bình, ta có HE // AD; EG // AC nên

 \(\widehat{HEG}=\widehat{HEM}+\widehat{MEG}=\widehat{DAM}+\widehat{MAC}=\widehat{DAC}\) (Các góc đồng vị bằng nhau)

Tương tự \(\widehat{HFG}=\widehat{HFM}+\widehat{MFG}=\widehat{DBM}+\widehat{MBC}=\widehat{DBC}\)

Mà \(\widehat{DAC}=\widehat{DBC}\) (Hai góc nội tiếp cùng chắn cung DC)

Vậy \(\widehat{HEG}=\widehat{HFG}\) hay EFGH là tứ giác nội tiếp. Vậy 4 điểm E, F, G, H cùng thuộc một đường tròn.

Trường hợp hình dưới đây, ta làm tương tự, nhưng xét hiệu hai góc.

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [M, A] Đoạn thẳng g: Đoạn thẳng [D, M] Đoạn thẳng h: Đoạn thẳng [B, M] Đoạn thẳng i: Đoạn thẳng [C, M] Đoạn thẳng j: Đoạn thẳng [E, G] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [H, E] Đoạn thẳng m: Đoạn thẳng [A, D] Đoạn thẳng n: Đoạn thẳng [G, F] Đoạn thẳng p: Đoạn thẳng [H, F] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng r: Đoạn thẳng [C, B] O = (5.56, -3.6) O = (5.56, -3.6) O = (5.56, -3.6) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c M = (1.68, -3.19) M = (1.68, -3.19) M = (1.68, -3.19) Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm E: Trung điểm của f Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm F: Trung điểm của h Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm G: Trung điểm của i Điểm H: Trung điểm của g Điểm H: Trung điểm của g Điểm H: Trung điểm của g

Đọc tiếp...
Phan Thanh Tịnh 19 tháng 1 2017 lúc 21:02
Báo cáo sai phạm

A B E F x y M K O

a)\(\hept{\begin{cases}Ax⊥AB\\By⊥AB\end{cases}}\)=> Ax // By.\(\Delta KFB\)có EA // FB nên\(\frac{KF}{KA}=\frac{BF}{AE}\)(hệ quả định lí Ta-lét) mà EA = EM ; FM = FB (tính chất của 2 tiếp tuyến)

\(\Rightarrow\Delta AEF\)\(\frac{KF}{KA}=\frac{MF}{ME}\)nên MK // AE (định lí Ta-lét đảo) mà\(AE⊥AB\Rightarrow MK⊥AB\)

b)\(\widehat{EOM}=\frac{\widehat{AOM}}{2};\widehat{FOM}=\frac{\widehat{MOB}}{2}\)(tính chất 2 tiếp tuyến) mà\(\widehat{EOM}+\widehat{FOM}=180^0\)(kề bù)

\(\Rightarrow\widehat{EOF}=\widehat{EOM}+\widehat{FOM}=\frac{180^0}{2}=90^0\)

\(\Rightarrow\Delta EOF\)vuông tại O có OE + OF > EF (bđt tam giác) ; OE + OF < 2EF (vì OE,OF < EF)

\(\Rightarrow1< \frac{OE+OF}{EF}< 2\Rightarrow2< \frac{P_{EOF}}{EF}< 3\Rightarrow\frac{1}{3}< \frac{EF}{P_{EOF}}< \frac{1}{2}\)(1)

Hình thang AEFB (AE // FB) có diện tích là :\(\frac{\left(AE+FB\right).AB}{2}=\frac{\left(EM+FM\right).2R}{2}=EF.R\)

SAEO = SMEO vì có đáy OA = OM ; đường cao AE = ME\(\Rightarrow S_{MEO}=\frac{1}{2}S_{AEMO}\) 

SFOM = SFOB  vì có đáy FM = FB ; đường cao OM = OB\(\Rightarrow S_{FOM}=\frac{1}{2}S_{MFBO}\)

\(\Rightarrow S_{EOF}=\frac{1}{2}\left(S_{AEMO}+S_{MFBO}\right)=\frac{EF.R}{2}\).Từ tâm đường tròn nội tiếp I của\(\Delta EOF\)kẻ các đường vuông góc với OE,OF,EF thì\(S_{EOF}=S_{EIF}+S_{EIO}+S_{OIF}\)\(\Leftrightarrow\frac{EF.R}{2}=\frac{EF.r+EO.r+OF.r}{2}\)

\(\Rightarrow EF.R=P_{EOF}.r\Rightarrow\frac{r}{R}=\frac{EF}{P_{EOF}}\)(2).Thay (2) vào (1) ta có đpcm.

Đọc tiếp...
xuca 19 tháng 1 2017 lúc 19:42
Báo cáo sai phạm

sao nguyên bài khó thế

Đọc tiếp...
Nguyễn Thị Thanh Hương 21 tháng 1 2017 lúc 9:56
Báo cáo sai phạm

I don't know

Đọc tiếp...
Nguyễn Tất Đạt 22 tháng 9 lúc 14:00
Báo cáo sai phạm

A B O M C D E F H G

1) Vì ^AEB chắn nửa đường tròn (O) nên EA vuông góc EB. Do đó BE // CM.

Suy ra tứ giác BECM là hình thang cân (Vì 4 điểm B,C,M,E cùng thuộc (O))

Kết hợp với M là điểm chính giữa cung AB suy ra CE = BM = AM hay (CE = (AM

Vậy thì tứ giác ACEM là hình thang cân (đpcm).

2) Đường tròn (O) có M là điểm chính giữa cung AB, suy ra MO vuông góc AB

Từ đó MO // CH suy ra ^HCM = ^OMC = ^OCM. Vậy CM là phân giác của ^HCO (đpcm).

3) Kẻ đường kính MG của đường tròn (O). Dễ thấy ^DOG = ^DCG (= 900)

Suy ra 4 điểm C,D,O,G cùng thuộc đường tròn đường kính DG

Mặt khác AB là trung trực của MG, D thuộc AB nên DG = DM

Theo mối quan hệ giữa đường kính và dây ta có: 

\(CD\le DG=DM\Leftrightarrow2CD\le DM+CD=CM\Leftrightarrow CD\le\frac{1}{2}CM\)

Lại có tứ giác ACEM là hình thang cân, do vậy \(CD\le\frac{1}{2}CM=\frac{1}{2}AE\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi C là điểm chính giữa cung AB không chứa M của (O).

Đọc tiếp...
Nguyễn Tất Đạt 8 tháng 8 lúc 13:04
Báo cáo sai phạm

A B C D I E F Q R S

Ta có ^SDI = ^SAI, ^SBI = ^SCI => \(\Delta\)DSB ~ \(\Delta\)ASC (g.g) => \(\Delta\)ASD ~ \(\Delta\)CSB (c.g.c)

Mà AD = BC nên tỉ số đồng dạng của 2 tam giác trên là 1, nói cách khác \(\Delta\)ASD = \(\Delta\)CSB

Do đó ^SBC = ^SDA và SB = SD. Kết hợp với BE = DF suy ra \(\Delta\)SEB = \(\Delta\)SFD (c.g.c)

Từ đây dễ suy ra \(\Delta\)ESF ~ \(\Delta\)BSD => ^SEF = ^SBD = ^SCI => Tứ giác CERS nội tiếp

=> ^SRQ = ^ECS = ^BCS = ^SIQ => Tứ giác QIRS nội tiếp (đpcm).

Đọc tiếp...
•长๏ʂαƙĭ ✦ ๖ۣۜƴυησ ™༉ 16 tháng 7 lúc 19:07
Báo cáo sai phạm

Bn tự vẽ hình nhé...

a)

AB⊥CD (GT) => CIB =90 độ (1)

AEB=90độ ( góc nt chắn nữa dg tròn) (2)

Từ (1)và(2) tứ giác BEFI nội tiếp

b)

Xét ΔAFC và Δ ACE có

  A( góc chung)

  C=E( vì 2 góc cùng chắn 2 cung AC và AD bằng nhau)

=>ΔAFC∼Δ ACE

=> AC/AE=AF/AC

=> AE.AF=AC2

Đọc tiếp...
Nguyễn Linh Chi Quản lý 28 tháng 5 lúc 14:57
Báo cáo sai phạm

O M B A C H N

G/s N thuộc đoạn thẳng AB

a) Ta có AC, AB là tiêp tuyến (O)

=> AC=AB=R

Xét tứ giác ABCO có: 

AC=AB=BO=CO=R

=> ABCO là hình thoi

mặt khác \(\widehat{ABO}=90^o\)

=> ABCO là hình vuông

=> A,B,C,O cùng thuộc một đường tròn

Tứ giác BHAC nội tiếp vì \(\widehat{BHC}=\widehat{BAC}=\left(90^o\right)\)

=> A,B,C,H cùng thuộc một đường tròn

=> O, B, A, C, H cùng thuộc một đường tròn

b) \(AN.OM=\left(AB-BN\right)\left(MB+BO\right)=AB.BO-BN.BO+MB.\left(AB-BN\right)\)

\(=R^2-BN.R+MB.AN\)(1)

Ta có:

 AC//MB => \(\frac{AN}{BN}=\frac{AC}{MB}\Rightarrow AN.BM=AC.BN\Rightarrow AN.BM=R.BN\)(2)

(1), (2) => AN. OM=R^2

c) Đặt AN =x

=> BN=AB-BN=R-x

và MO=\(\frac{R^2}{AN}=\frac{R^2}{x}\Rightarrow BM=\frac{R^2}{x}-R\)

Diện tích tam giác BMH =\(\frac{1}{2}\left(R-x\right)\left(\frac{R^2}{x}-R\right)=\frac{9R^2}{4}\)

<=> \(\frac{\left(R-x\right)^2}{x}=\frac{9R}{2}\)

<=> \(R^2-\frac{13}{2}Rx+x^2=0\)

<=> \(\left(x-\frac{13}{4}R\right)^2=\frac{153}{16}R^2\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{17}+13}{4}R\left(loai\right)\\x=\frac{-3\sqrt{17}+13}{4}R\left(tm\right)\end{cases}}\)

Tìm đc AN => tìm đc OM

TH M thuộc đoạn thẳng BO tương tự

Đọc tiếp...
๖ۣۜForever๖ۣۜLove♡❤♡๖ۣۜNever๖ۣۜForget 16 tháng 4 lúc 19:48
Báo cáo sai phạm

Kaneki Ken Vũ nói vậy thì ai cũng nói được, câu trả lời vô dụng

Đọc tiếp...
Kaneki Ken Vũ 15 tháng 4 lúc 21:32
Báo cáo sai phạm

bạn tự vẽ hình nhé còn phần chứng minh để tui lo

a) để chứng minh 5 điểm này cùng nằm trên đường tròn thì bạn cần chứng minh 4 điểm A,K,F,E cùng nằm trên 1 đường tròn ( chứng minh tứ giác AKFE nội tiếp theo các cách chứng minh trong SGK toán 9 tập 2 trang 103 phần thứ 15) và bạn chứng minh 4 điểm này theo đúng hình vẽ mà bạn vẽ

sau đó chứng minh nốt K,E,F,H cùng nằm trên 1 đường tròn hoặc các điểm khác như : A,K,H,F ....... tùy hình vẽ (cách chứng minh giống như trên)

sau khi chứng minh đc 2 điều này thì => điều phải chứng minh ở phần a

b) để chứng minh 4 điểm này thẳng hàng thì có rất nhiều cách nhưng  bạn nên chọn cách chứng minh 3 điểm M,H,S hoặc H,S,K , ..... cùng thẳng hàng sau đó => 4 điểm thẳng hàng 

để chứng minh đc thì bạn nên xem hình vẽ và dữ kiện đã chứng minh ở phần a và suy ra những thứ cần thiết để có thể chứng minh đc cho phần b 

bạn có thể chứng minh : ở 3 điểm đó có 3 góc mà khi cộng chúng lại với nhau sẽ bằng 180 độ => 3 điểm thẳng hàng

=> 4 điểm thẳng hàng

đây có thể là cách tốt nhất nhanh nhất mà mình nghĩ ra trong vòng vài phút mong bạn thông cảm thời gian của mình có hạn nên chỉ hướng dẫn đc tới đây ! .................

Đọc tiếp...
Trần Thùy Linh 15 tháng 4 lúc 21:02
Báo cáo sai phạm

http://tailieu.metadata.vn/chi-tiet/-/tai-lieu/tuyen-tap-80-bai-toan-hinh-hoc-lop-9-pdf-17121.html

Đọc tiếp...
Pham Van Hung 16 tháng 2 lúc 20:30
Báo cáo sai phạm

Tứ giác AFHE có: \(\widehat{AFH}=\widehat{AEH}=90^0\Rightarrow\widehat{A}+\widehat{FHE}=180^0\)

Mà \(\widehat{FHE}=\widehat{BHC}\) (đối đỉnh) và \(\widehat{BHC}=\widehat{D}\) (vì BHCD là hình bình hành)

Do đó: \(\widehat{A}+\widehat{D}=180^0\)

Vậy tứ giác ABDC nội tiếp.

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: