Tìm x,y \(\in\)Z sao cho \(2x^6\)+\(y^2\)-\(2x^3\)y=320
Đọc tiếp...Được cập nhật 6 tháng 12 lúc 21:18
Câu hỏi tương tự Đọc thêm Báo cáoTa có pt đã cho tương đương với: (x^3)^2+(x^3−y)^2=320
Vì x,y nguyên nên 320 là tổng của 2 số chính phương
Mà 320 viết thành tổng của 2 số chính phương chỉ có trường hợp là 320=162+82
Mà x^3 là lập phương của 1 số nguyên nên x^3=8, suy ra x=2 hoặc x=-2
+)Với x=2 ta có: 64+(8−y)2=320, suy ra y=24 hoặc y=-8
+)Với x=-2 ta có: 64+(−8−y)2=320, suy ra y=8 hoặc y=-24.
ta có pt đã cho tương đương với: (x3)2+(x3-y)2=320 (1)
vì x,y nguyên nên 320 là tổng của 2 số chính phương
Mà 320 viết thành tổng của 2 số chính phương chỉ có trường hợp là 320=162+82
mà x3 là lập phương của 1 số nguyên nên x3-8 => x=2
thay x=2 vào (1) ta có : 64+(8-y)2=320 => y=24 hoặc y=-8
đáp án là x=2;y=24 hoặc x=2;y=-8
giải pt nghiệm nguyên
\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
Đọc tiếp...Được cập nhật 29 tháng 11 lúc 20:44
Câu hỏi tương tự Đọc thêm Báo cáo\(5x^2+9y^2-12xy+8=24\left(2y-x-3\right)\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2+8-24\left(2y-x-3\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+x^2-48y+24x+80=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(32x-48y\right)+64+x^2-8x+16=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2=0\)
Đến đây dễ rồi bạn tự làm tiếp nhé
Giải Phương Trình Nghiệm nguyên:
\(\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}=y\)
Đọc tiếp...
Được cập nhật 26 tháng 11 lúc 11:53
Câu hỏi tương tự Đọc thêm Báo cáoBình phương hai vế ta có:
\(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=t\)
Tiếp túc bình phương và chuyển vế, ta có:
\(\sqrt{x+\sqrt{x}}=t^2-x=u\)
\(x+\sqrt{x}=u^2\)
Do y nguyên, x nguyên nên t nguyên, suy ra u nguyên, suy ra u2 nguyên, vậy thì \(\sqrt{x}\) nguyên.
Ta có \(\sqrt{x}\left(\sqrt{x}+1\right)=u^2\). Hai số tự nhiên liên tiếp có tích là số chính phương u2 nên \(\sqrt{x}=0\Rightarrow x=0.\)
Từ đó suy ra y = 0.
Vậy nghiệm của phương trình là (x; y) = (0; 0).
\(H=\frac{x\left(x+1\right)}{2}.\frac{x\left(x+1\right)\left(2x+1\right)}{6}=x^2\left(x+1\right)^2.\frac{2x+1}{12}\)
tồn tại vô số nguyên dương x để \(\frac{2x+1}{12}\) là số chính phương => ...
Ta có x2 –xy + y2 = 3 ⇔ (x- )2 = 3 –
Ta thấy (x- )2 = 3 – ≥ 0
⇒ -2 ≤ y ≤ 2
⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x
Ta được các nghiệm nguyên của phương trình là :
(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)
Tìm nghiệm nguyên của phương trình: \(3x^2+4y^2+12x+3y+5=0\)
Giúp mình nhé ai nhank mik tik cho! :D
Đọc tiếp...Được cập nhật 20 tháng 11 lúc 21:21
Câu hỏi tương tự Đọc thêm Báo cáo\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)
Coi pt trên là pt bậc 2 ẩn x
Ta có : \(\Delta'=36-12y^2-9y-15\)
\(=-12y^2-9y+21\)
Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)
\(\Leftrightarrow-\frac{7}{4}\le y\le1\)
Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)
Rồi làm nốt
1. Gpt nghiệm nguyên dương \(\left(x+1\right)\left(y+z\right)-2=xyz\)
2. Gpt nghiệm nguyên \(x+y+z=3\)và \(x^3+y^3+z^3=3\)
3. Tìm \(a,b\inℕ^∗\)sao cho \(a+b=2^{2019}\)và \(ab=2^n+1\)\(\left(b>a>1\right)\)
4. Tìm p nguyên tố sao cho 2p +1 là lập phương một số tự nhiên
5. Cho \(x,y,z\inℕ^∗\)và đôi một nguyên tố cùng nhau và \(-\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\). C/m \(x+y\)là số chính phương.
6. C/m \(13^n\times2+7^n\times5+26\)không là số chính phương.
Đọc tiếp...
Câu hỏi tương tự Đọc thêm Báo cáo
CMR pt sau có vô số nghiệm nguyên: \(\left(x+y+z\right)^2=x^2+y^2+x^2\)
Đọc tiếp...Được cập nhật 15 tháng 11 lúc 18:50
Câu hỏi tương tự Đọc thêm Báo cáoÝ làm lộn. Đừng coi cái trên nha:
Dễ thấy với 2 trong 3 số bằng 0 thì phương trình có vô số nghiệm.
Giả sử 2 số đó là; x = y = 0 thì ta có:
\(z^2=z^2\) vô số nghiệm nguyên.
Vậy bài toán được chứng minh.
Xét \(x,y,z\ne0\)ta có:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}< \left(x+y+z\right)^2\)(loại)
Xét trong 3 số có 2 số khác 0. Giả sử là \(x,y\ne0\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}< \left(x+y\right)^2\)(loại)
Vậy trong 3 số x, y, z phải có ít nhất 2 số bằng 0. Thế vô ta được phương trình có vô số nghiệm nguyên.
Chứng minh : Không tồn tại số nguyên tố p sao cho: \(3^p+19\left(p-1\right)\) là số chính phương.
Đọc tiếp...Được cập nhật 15 tháng 11 lúc 18:48
Câu hỏi tương tự Đọc thêm Báo cáoGỉa sử tồn tại số nguyên p thỏa mãn
Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )
* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn
* Nếu p>3 , p lẻ
+) p=4k +1
Ta có
\(3=-1\left(modA\right)\)
nên : \(3^p=-1\left(modA\right)\)
Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)
Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )
+) p=4k+3
Theo định lí Fermat ta có
\(3^p=3\left(modp\right)\)
và \(19\left(p-1\right)\equiv-19\left(modp\right)\)
nên \(VT\equiv-16\left(modp\right)\)
Do đó : \(n^2+16⋮p\)
-> Ta có : \(4⋮b\)( vô lí )
Vậy ta có đpcm
Chứng minh bằng cách phản chứng
Giả sử tồn tại số nguyên tố p thõa mãn
Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )
* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn
* Nếu p > 3 , p lẻ
+ ) p = 4k + 1
Ta có : 3 ≡ - 1 ( mod4 )
nên 3p ≡ - 1 ( mod4 )
và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )
Do đó VT ≡ VP ≡ - 1 ( mod4 ) ( vô lí )
+ ) p = 4k + 3
Theo định lí Fermat ta có :
3p ≡ 3 ( modp )
và 19 ( p - 1 ) ≡ - 19 ( modp )
nên VT ≡ - 16 ( modp )
Do đó n2 + 16 \(⋮\) p
Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )
Vậy ta có đpcm
Giả sử:
\(3^p+19\left(p-1\right)=x^2\)
Xét \(p=2,3\)
Xét \(p>3\)
\(\Rightarrow\orbr{\begin{cases}p=4k+1\\p=4k+3\end{cases}}\)
Với \(p=4k+1\)
\(\Rightarrow3^p+19\left(p-1\right)\equiv3\left(mod4\right)\) vô lý vì số chính phương chia cho 4 không có dư 3.
Với \(p=4k+3\)
\(\Rightarrow3^p+19\left(p-1\right)\equiv3-19\equiv-16\left(modp\right)\)
\(\Rightarrow x^2+16⋮p\)
\(\Rightarrow4⋮p\)(vô lý vì p > 4)
Giải phương trình với nghiệm nguyên: \(x^2-2^y=33\)
Đọc tiếp...Được cập nhật 6 tháng 11 lúc 16:14
Câu hỏi tương tự Đọc thêm Báo cáo\(x^2-2^y=33\)
<=> \(x^2=33+2^y\)
Vì x nguyên => \(2^y\)là số tự nhiên => y là số tự nhiên
TH1: y = 2k + 1 ; k thuộc N
=> \(x^2=33+2^{2k+1}\)
=> \(x^2=33+2.4^k\)
Có: \(4\equiv1\left(mod3\right)\)=> \(4^k\equiv1\left(mod3\right)\)=> \(2.4^k\equiv2\left(mod3\right)\)
=> \(VP:3\)dư 2
mà VT là số chính phương chia 3 không dư 2
Do đó trường hợp này loại.
TH2: y = 2k ; k thuộc N
=> Ta có pt:
\(x^2-2^{2k}=33\)
<=> \(\left(x-2^k\right)\left(x+2^k\right)=33.1=-33.\left(-1\right)=11.3=-11.\left(-3\right)\)
Vì : \(2^k>0\)=> \(x-2^k< x+2^k\)
Xảy ra 4 khả năng:
\(\hept{\begin{cases}x+2^k=33\\x-2^k=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=17\\2^k=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=17\\y=8\end{cases}}}\) thử lại tm
\(\hept{\begin{cases}x+2^k=-1\\x-2^k=-33\end{cases}\Leftrightarrow\hept{\begin{cases}x=-17\\2^k=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-17\\y=8\end{cases}}}\) thử lại tm
\(\hept{\begin{cases}x+2^k=11\\x-2^k=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\2^k=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=4\end{cases}}}\)thử lại tm
\(\hept{\begin{cases}x+2^k=-3\\x-2^k=-11\end{cases}\Leftrightarrow\hept{\begin{cases}x=-7\\2^k=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=4\end{cases}}}\)thử lại tm
Giải phương trình nghiệm nguyên: \(2^x+2^y=2^{x+y}\)
Đọc tiếp...Được cập nhật 6 tháng 11 lúc 16:10
Câu hỏi tương tự Đọc thêm Báo cáoKhông mất tính tổng quát: g/s: \(x\ge y\).
=> tồn tại số tự nhiên m sao cho: \(x=y+m\)
phương tình ban đầu trở thành:
\(2^{y+m}+2^y=2^{y+m+y}\)
<=> \(2^m+1=2^m.2^y\)
<=> \(\left(2^m\right)\left(2^y-1\right)=1\)
+) m =0 => y =x =1 thử vào thỏa mãn'
+) m > 0
Nếu y < 0 => \(2^y-1< 0\)=> \(1=\left(2^m\right)\left(2^y-1\right)< 0\)
Nếu y = 0 => loại
Nếu y >0 . Có: \(1=2^m\left(2^y-1\right)>2\left(2^y-1\right)\)=> \(2^y-1< \frac{1}{2}\) loại
Vậy pt chỉ có nghiệm : \(x=y=1.\)
Tìm các bộ số nguyên dương x, y, z thỏa mãn:
\(x^2+15^y=2^z\)
Đọc tiếp...Được cập nhật 6 tháng 11 lúc 16:10
Câu hỏi tương tự Đọc thêm Báo cáo@ Tuấn Đạt@ Sao lại không có nghiệm thỏa mãn. ??
x = 1; y = 1; z = 4. thỏa mãn mà.
\(x^2+15^y=2^z\)(\(z\ge4\))
Do VT chẵn và 15 lẻ nên x lẻ
Khi đó x có dạng 2k+1(\(k\in N\))
\(\Rightarrow x^2\equiv1\left(mod4\right)\)
TH1:y chẵn \(\Rightarrow15^y\equiv1\left(mod4\right)\)
\(\Rightarrow VT\equiv2\left(mod4\right)\)
\(\Rightarrow2^z\equiv2\left(mod4\right)\).Điều này chỉ xảy ra khi z=1 (nếu z>1 thì 2z chia hết cho 4)
Mà z>=4 => Loại TH này
\(15⋮3\)\(\Rightarrow x^2\equiv2\left(mod3\right)\)(Vô lí)
Vậy y lẻ.
TH2:Với y lẻ thì \(15^y\equiv-1\left(mod4\right)\)mà \(2^z⋮4\)
\(\Rightarrow x^2\equiv-1\left(mod4\right)\)(Vô lí)
Vậy ko có x,y,z là số nguyên dương thỏa mãn
Giải phương trình với nghiệm tự nhiên:
a, \(2^x+2^y=2^z\)
b, \(2^x+2^y+2^z=552\)(với x<y<z)
Đọc tiếp...Được cập nhật 6 tháng 11 lúc 16:10
Câu hỏi tương tự Đọc thêm Báo cáob/ \(2^x+2^y+2^z=552\)
\(\Leftrightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=2^3.69\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\1+2^{y-x}+2^{z-x}=69\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=3\\2^y+2^z=544\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow2^y\left(1+2^{z-y}\right)=2^5.17\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\1+2^{z-y}=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=5\\z=9\end{cases}}\)
Vậy \(x=3;y=5;z=9\)
a/ Dễ thấy: \(z>x,y\)
Xét \(x>y\)
\(\Rightarrow2^x\left(1+2^{y-x}-2^{z-x}\right)=0\)
Loại vì \(2^x\left(1+2^{y-x}-2^{z-x}\right)< 0\)
Tương tự cho trường hợp \(x< y\)
Xét \(x=y\)
\(2^x+2^y=2^z\)
\(\Leftrightarrow2^{x+1}=2^z\)
\(\Leftrightarrow x+1=z\)
Vậy nghiệm là: \(x=y=z-1\)
Tìm tất cả các số tự nhiên (x;y) thỏa mãn phương trình: \(x^2+16x+1=y^2\)
Đọc tiếp...Được cập nhật 6 tháng 11 lúc 16:10
Câu hỏi tương tự Đọc thêm Báo cáo...
Dưới đây là những câu có bài toán hay do Online Math lựa chọn.
....
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.