Giúp tôi giải toán và làm văn


alibaba nguyễn CTV Hôm qua lúc 10:44
Báo cáo sai phạm

Dễ dàng thấy được a, b phải cùng tính chẵn lẻ.

Ta đặt \(\hept{\begin{cases}a^5+b=2^x\left(1\right)\\b^5+a=2^y\left(2\right)\end{cases}}\) với \(\hept{\begin{cases}x,y\in N;x,y>0\\x+y=c\end{cases}}\)

Không mất tính tổng quát ta giả sử: \(a\ge b\)

Lấy (1) - (2) ta được

\(a^5+b-b^5-a=2^x-2^y\)

\(\Leftrightarrow\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4-1\right)=2^y\left(2^{x-y}-1\right)\)

Ta thấy rằng \(\hept{\begin{cases}a-b:chan\\a^4+a^3b+a^2b^2+ab^3+b^4-1:le\end{cases}}\)

Ta xét 2 TH: 

TH 1: \(a=b\)

\(\Rightarrow a^5+a=2^x\)

Với \(a=1\)\(\Rightarrow x=1\)(nhận) 

Với \(a>1\)

\(\Rightarrow a\left(a^4+1\right)=2^x\) (loại vì \(a,\left(a^4+1\right)\)trong 2 số này sẽ có ít nhất 1 số lẻ)

TH 2: \(a\ne b\)

Ta có: \(\hept{\begin{cases}a-b:chan\\a^4+a^3b+a^2b^2+ab^3+b^4-1:le\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-b=k.2^y\\a^4+a^3b+a^2b^2+ab^3+b^4-1=\frac{2^{x-y}-1}{k}\end{cases}}\)(với k là số nguyên dương)

Ta có: \(a-b=k.\left(b^5+a\right)>a+b>a-b\)(loại)

Vậy ta có 1 bộ nghiệm duy nhất là: \(\left(a,b,c\right)=\left(1,1,2\right)\)

Đọc tiếp...
Phạm Văn Việt 14 giờ trước (20:37)
Báo cáo sai phạm

cái đoạn a-b=k(b^5+a) em k hiểu cho lắm ạ,anh giảng lại dc k

Đọc tiếp...
Nguyễn Thiều Công Thành 06/09/2017 lúc 14:18
Báo cáo sai phạm

<=>3(x2-6x+9)+6y2+2z2+3y2z2=33

<=>3(x-3)2+6y2+2z2+3y2z2=33

nhận thấy 3(x-3)2;6y2;3y2z2 chia hết cho 

=>2z2 chia hết cho 3=>z chia hết cho 3

giả sử trong 4 số đó không số nào =0

=>\(3\left(x-3\right)^2\ge3;6y^2\ge6;2z^2\ge18;3y^2z^2\ge27\Rightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2\ge54\)(vô lí)

với x-3=0

=>x=3

pt trở thành 6y2+2z2+3y2z2=6

<=>(3y2+2)(z2+2)=10

với y=0

=>3(x-3)2+2z2=33 (đến đây thid dễ rồi)

với z=0=>3(x-3)2+6y2=33

=>(x-3)2+2y2=11

Đọc tiếp...
KUDO SHINICHI 14/10 lúc 20:09
Báo cáo sai phạm

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Đọc tiếp...
Nguyễn Quang Vinh 11/10/2017 lúc 21:41
Báo cáo sai phạm

(y+z)(x+y)(x+z)(y+z)(x+yz)=xy+xz+(y+z)yz

mà y+z2xy(y+z)yz2yz

=> (y+z)(x+y)(z+x)x y+z+2yzx 

 Đúng 1  Sai 1 
Đọc tiếp...
vũ tiền châu 11/10/2017 lúc 19:27
Báo cáo sai phạm

viết tạm vào đây vậy 

sau khi nhân ra ta có ...và Áp dụng bu nhi ta có 

\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

=> \(\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}\ge\left(y+z\right)\left(x+\sqrt{yz}\right)=xy+xz+\left(y+z\right)\sqrt{yz}\)

mà \(y+z\ge2\sqrt{xy}\Rightarrow\left(y+z\right)\sqrt{yz}\ge2yz\)

=> \(\frac{\left(y+z\right)\sqrt{\left(x+y\right)\left(z+x\right)}}{x}\ge y+z+\frac{2yz}{x}\)

mấy cái kia tương tự rồi cộng vào

Đọc tiếp...
alibaba nguyễn 02/06/2017 lúc 09:08
Báo cáo sai phạm

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x-y\right)^3\)

\(\Leftrightarrow y\left[2y^2+\left(x^2-3x\right)y+3x^2+x\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\2y^2+\left(x^2-3x\right)y+3x^2+x=0\end{cases}}\)

Với \(y=0\)thì x nguyên tùy ý.

Với \(2y^2+\left(x^2-3x\right)y+3x^2+x=0\)

Ta có: \(\Delta=\left(x^2-3x\right)^2-4.2.\left(3x^2+x\right)=\left(x-8\right)x\left(x+1\right)^2\)

Với \(x=-1\) thì \(\Rightarrow y=-1\)

Với \(x\ne-1\) để y nguyên thì \(\Delta\) phải là số chính phương hay

\(\left(x-8\right)x=k^2\)

\(\Leftrightarrow\left(x^2-8x+16\right)-k^2=16\)

\(\Leftrightarrow\left(x-4+k\right)\left(x-4-k\right)=16\)

Tới đây thì đơn giản rồi b làm tiếp nhé.

Đọc tiếp...
Công chúa sao băng 08/06/2017 lúc 14:09
Báo cáo sai phạm

( x2 + y ) . ( x + y2 ) = ( x - y3 )

Ủng hộ mk nha các bạn

Đọc tiếp...
giakhiemchit 02/06/2017 lúc 11:47
Báo cáo sai phạm

( x+ y) ( x + y2) = ( x - y )3


 

Đọc tiếp...
vũ tiền châu 30/09/2017 lúc 20:33
Báo cáo sai phạm

t a có pt 

<=> \(x^2-2009x-xy+5+y=0\Leftrightarrow x^2-2009x+5=xy-y\)

xét x=1 => ....

xét x khác 1 thì ta có 

<=> \(y=\frac{x^2-2009x+5}{x-1}\)

để y thuộc Z thì \(\frac{x^2-2009x+5}{x-1}=\frac{x^2-x-2008x+2008-2003}{x-1}\in Z\Leftrightarrow x-2008-\frac{2003}{x-1}\in Z\)

<=> x-1 là ước của 2003 đến đây tự giải tiếp

Đọc tiếp...
Trương Ngọc Sang 01/10/2017 lúc 21:18
Báo cáo sai phạm

Ta có phương trình tương đương với:

x-2009x-xy+5+y=0

<=>x2-1-2009x+2009+y(x-1)-2003=0

<=>(x-1)(x+1)-2009(x-1)+y(x-1)=2003

<=>(x-1)(x-2008+y)=2003

đưa về ước số và giải tiếp!

Đọc tiếp...
Kudo Shinichi 30/09/2017 lúc 19:10
Báo cáo sai phạm
OnIine Math 30/09/2017 lúc 12:33
Báo cáo sai phạm

\(a.\left[bn\right]=\left[b.an\right]\)

\(\Rightarrow\frac{a}{b}=\frac{an}{bn}\)

\(\Rightarrow\frac{a}{b}=\frac{a}{b}\)

\(\Rightarrow\left(a;b\right)\in R\)

 

chúc các bn hoc tốt 

Đọc tiếp...
leminhduc 03/10/2017 lúc 05:44
Báo cáo sai phạm

Ta có : \(a.\left[bn\right]=b.\left[a.n\right]\)

\(\Rightarrow\frac{a}{b}=\frac{an}{bn}\)

\(\Rightarrow\frac{a}{b}=\frac{a}{b}\)\(\Leftrightarrow\frac{a}{a}=\frac{b}{b}=\frac{a+b}{a+b}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{a}{b}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=a\end{cases}}\)

\(\Rightarrow\left(a,b\right)\in R\)  ( Trong đó tất cả các số (a) đều bằng các số (b)  )

Đọc tiếp...
OnIine Math 30/09/2017 lúc 18:27
Báo cáo sai phạm

A.(BN) = (B.AN)
=>\(\frac{A}{B}=\frac{AN}{BN}\)
=>\(\frac{A}{B}=\frac{A}{B}\)
=>(A;B) \(\in R\)
 

Đọc tiếp...
Bùi Thị Vân Quản lý 16/08/2016 lúc 12:34
Báo cáo sai phạm

 Ta đặt \(x=\sqrt[3]{2-\sqrt{b}};y=\sqrt[3]{2+\sqrt{b}}\Rightarrow x^3+y^3=4.\)
\(x^2=\sqrt[3]{4-4\sqrt{b}+b}=\sqrt[3]{\left(2-\sqrt{b}\right)^2},y^2=\sqrt[3]{4+4\sqrt{b}+b}=\sqrt[3]{\left(2+\sqrt{b}\right)^2}\).
\(\sqrt[3]{4-b}=\sqrt[3]{\left(2-\sqrt{b}\right)\left(2+\sqrt{b}\right)}=xy\).
Ta có: \(\frac{4}{a}+xy=x^2+y^2\Leftrightarrow\frac{4}{a}=x^2+y^2-xy.\)
          \(\Leftrightarrow4=a\left(x^2+y^2-xy\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\).
Suy ra: x + y = a. Vậy x + y là ước của 4 và x + y nguyên dương.
Từ đó ta suy ra: x + y = 1; 2; 4. Kết hợp với điều kiện \(x^3+y^3=4,x\le y.\), Ta sẽ có 3 hệ, các bạn tìm x, y rồi tìm a, b.

Đọc tiếp...
alibaba nguyễn CTV 25/09/2017 lúc 21:33
Báo cáo sai phạm

6x- 26x - 6y2 + 39y - 5xy - 5 = 0

<=> (6x2 - 9xy) + (4xy - 6y2) + ( - 26x + 39y) = 5

<=> (2x - 3y)(3x + 2y - 13) = 5

Tới đây tự làm nốt nhé

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 22/09/2017 lúc 11:03
Báo cáo sai phạm

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

Đọc tiếp...
Quang 26/05/2017 lúc 20:59
Báo cáo sai phạm

Nhờ bạn sửa lại dòng 2 : \(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{1}{2}\). Bạn sửa lại thành \(\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{xy}{2xy}\)

Đọc tiếp...
Quang 26/05/2017 lúc 20:55
Báo cáo sai phạm

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

\(\Leftrightarrow\frac{2y}{2xy}+\frac{2x}{2xy}+\frac{1}{2xy}=\frac{1}{2}\)

\(\Leftrightarrow2y+2x+1=xy\)

\(\Rightarrow2y+2x-xy=-1\)

\(\Rightarrow y\left(2-x\right)+2x=-1\)

\(\Rightarrow y\left(2-x\right)+2x-4=-1-4\)

\(\Rightarrow y\left(2-x\right)-4+2x=-5\)

\(\Leftrightarrow y\left(2-x\right)-2\left(2-x\right)=-5\)

\(\Leftrightarrow\left(y-2\right)\left(2-x\right)=-5\)

y-2-5-1
2-x15-1-5
x1-337
y-3173

Vậy các cặp số (x,y) thỏa mãn là (1, -3); (-3; 1); (3, 7); (7, 3).

Đọc tiếp...
Nguyễn Thiều Công Thành 23/09/2017 lúc 10:42
Báo cáo sai phạm

ta có:

\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)

\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)

<=>x=0=>2y=1=>y=0

Vậy nghiệm của pt:(x;y)=(0;0)

Đọc tiếp...
vũ tiền châu 11/09/2017 lúc 21:03
Báo cáo sai phạm

a) nhé ta đặt \(\sqrt{x^2+2010}=a;x^2=b\)

từ phương rình => \(b^2+a=2010\)

và \(a^2-b=2010\)

nên ta có hệ phương trình sau 

\(\hept{\begin{cases}b^2+a=2010\\a^2-b=2010\end{cases}}\)

trừ hai vếcủa heẹ phương trình ta có 

\(a^2-b^2-b-a=0\Leftrightarrow\left(a+b\right)\left(a-b\right)-\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)

đến đay thì dễ rồi nhé 

Đọc tiếp...
vu 11/09/2017 lúc 21:39
Báo cáo sai phạm

hiểu rồi 

Đọc tiếp...
vu 11/09/2017 lúc 21:38
Báo cáo sai phạm

nhưng vì sao có a2-b=2010

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câu

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: