Giúp tôi giải toán


Thắng Nguyễn CTV 25/09/2016 lúc 13:20

x2 - 2y2 = 5

=>x2=2y2+5  (1)

=>x là số lẻ. Đặt \(x=2k+1\left(k\in Z\right)\). Khi đó

\(\left(1\right)\Leftrightarrow\left(2k+1\right)^2=2y^2+5\)

\(\Leftrightarrow4k^2+4k+1=2y^2+5\)

\(\Leftrightarrow2y^2=4k^2+4k-4\)

\(\Leftrightarrow y^2=2\left(k^2+k-1\right)\) (2)

=>y chẵn. Đặt \(y=2n\left(n\in Z\right)\). Khi đó 

\(\left(2\right)\Leftrightarrow4n^2=2\left(k^2+k-1\right)\)

\(\Leftrightarrow2n^2+1=k\left(k+1\right)\) (*)

Nhìn vào (*) ta thấy VT lẻ, VP chẵn (vì k; k+1 là 2 số nguyên liên tiếp nên một trong 2 số là chẵn)

=> (*) vô nghiệm =>pt đầu vô nghiệm

Vậy không có x,y nguyên nào thỏa mãn 

Lê Thế Tài 10/02/2017 lúc 21:34

x2 - 2y2 = 5   (4)

Lời giải : Từ phương trình (4) ta => x phải là số lẻ. Thay x = 2k + 1 (k thuộc Z) vào (4), ta được : 
4k2 +4k + 1 - 2y2 = 5 
tương đương 2(k2 + k - 1) = y2 
=> y2 là số chẵn => y là số chẵn.

Đặt y = 2t (t thuộc Z), ta có : 
2(k2 + k - 1) = 4t2 
tương đương k(k + 1) = 2t2 + 1   (**)

Nhận xét : k(k + 1) là số chẵn, 2t2 + 1 là số lẻ => phương trình (**) vô nghiệm.

Vậy phương trình (4) không có nghiệm nguyên.

alibaba nguyễn 09/02/2017 lúc 18:15

Không mất tính tổng quát ta giả sử

\(x\ge y\ge z>0\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)

\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)

\(\Rightarrow z\le3\)

\(\Rightarrow z=1;2;3\)

*Với z = 1 thì 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)

*Với z = 2 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow y\le4\)

\(\Rightarrow y=1;2;3;4\)

+Với y = 1

\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)

+Với y = 2 thì

\(\Rightarrow\frac{1}{x}=0\)(loại)

+Với y = 3 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+Với y = 4 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Rightarrow x=4\)

*Với z = 3 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)

\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=1;2;3\)

+ Với y = 1 thì

\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)

+ Với y = 2 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+ Với y = 3 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(\Rightarrow x=3\)

Tới đây thì bạn tự kết luận nhé 

Nguyễn Thiên Kim 09/02/2017 lúc 17:58

Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp: 
     \(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm) 
     \(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\)  \(\left(y-2\right)\left(z-2\right)=4\)
       Mà \(0\le y-2\le z-2\)\(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
                                           \(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)

     \(-\) Nếu \(x=3\) thì  \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)       + Nếu \(y=3\) thì \(z=3\)
                                                                              + Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
                                                                                \(\Rightarrow\) phương trình vô nghiệm 
     \(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\)   \(\Rightarrow\) phương trình vô nghiệm 

         Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

alibaba nguyễn 18/10/2016 lúc 09:33

Ta có

\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)

\(\Leftrightarrow\left(2^{2x}+5\times2^x+4\right)\left(2^{2x}+5\times2^x+6\right)=11879+5^y\)

\(\Leftrightarrow\left(2^{2x}+5\times2^x+5\right)^2=11880+5^y\)

Với y = 0 thì

\(2^{2x}+5\times2^x+5=109\)

\(\Leftrightarrow2^x=8\)

\(\Leftrightarrow x=3\)

Với \(y\ge1\)thì vế trái không chia hết cho 5 còn vế phải chia hết cho 5 nên không tồn tại (x, y) thỏa cái đó

Vậy có duy nhất 1 cặp nghiệm tự nhiên là (x, y) = (3, 0)

alibaba nguyễn 03/02/2017 lúc 13:23

Với x = 0 thì \(y^2=2\) (loại)

Với \(x\ge1\) thì 

\(2^x=y^2-1=\left(y-1\right)\left(y+1\right)\)

Ta thấy (y - 1) và (y + 1) là 2 số chẵn liên tiếp. Mà \(2^x\) chỉ có ước nguyên tố là 2 nên (y - 1) và (y + 1) cũng chỉ có ước nguyên tố là 2.

Từ đây ta suy ra được:

\(\hept{\begin{cases}y-1=0\\y+1=2\end{cases}}\) hoặc \(\hept{\begin{cases}y-1=2\\y+1=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=1\left(l\right)\\y=3\end{cases}}\)

\(\Rightarrow x=3\)

oOo Lê Việt Anh oOo 03/02/2017 lúc 14:46

2^x + 1 = y^2 
2^x = y^2-1 
2^x =(y-1)(y+1) 

=> y+1 = 2^x/(y-1) 
Do y+1 nguyên => y-1 là ước của 2^x, chỉ có thể có dạng 2^n với n>=1 hoặc y-1 =1 (loại) 

=> y-1 có dạng 2^n => y-1 = 2^n 
=> y+1 = 2^n +2 

=> 2^x = 2^n(2^n+2)= 2^(n+1).[2^(n-1) +1] (*) 

Nếu n> 1 thì 2^(n-1) +1 là số lẻ trong khi 2^x chẵn => (*) Vô nghiệm 
Với n=1 => y =3 => x= 3

ngonhuminh 18/01/2017 lúc 22:18

2012=4.503.

503 nguyên tố thì phải

\(\sqrt{2012}=2\sqrt{503}\)

x=y=503 là nghiệm

(x,y)=(0,2012);(2012,0): (503,503)

có lẽ hết rồi

ngô việt hoàng 19/01/2017 lúc 05:29

Kể cả hết rồi, phương pháp mò nghiệm chỉ dành cho cấp 1, ..có mò hết ra vẫn cần một lời giải thức__> kết luận, chính thức hết.

ngonhuminh 15/01/2017 lúc 13:36

@ thanhtinh không được cũng phải cố cho nó được chứ:

\(a^2-b^2=90\Rightarrow a^2+b^2=90+2b^2\)

Lấy kết luận cua @thanhtinh là:  không thấy  b=>theo tính chất giao hoán=> b thấy không => b=0

Vậy \(a^2+b^2=90\)  

chỉ có thuyền mới hiểu....

Cân bằng phương trình VĂN-TOÁN 

"Nếu em là thuyền thì Anh xin là biển lớn"\(\Leftrightarrow\)"Nếu em là thuyền, Thì Anh vẫn là ...Anh"

Nguyễn Quốc Vương 20/01/2017 lúc 16:36

2035103 mình chắc là đúng

Phan Thanh Tịnh 15/01/2017 lúc 11:41

a2 - b2 = 90 <=> (a - b)(a + b) = 90 => a + b và a - b là 2 ước của 90.

ĐK :- \(a,b\ge1\Rightarrow a+b\ge2\)

- (a + b) - (a - b) = 2b (chẵn) => a + b và a - b cùng tính chẵn lẻ mà (a + b)(a - b) = 90 (chẵn) => a + b ; a - b cùng chẵn

Tuy nhiên,khi phân tích 90 ra thừa số nguyên tố,số mũ của thừa số 2 nhỏ hơn 2 (90 = 2.32.5) nên a + b và a - b không thể cùng chẵn

Vậy giá trị của a - b ; a + b ; a ; b và a2 + b2 đều không tìm được.

Trần Quốc Đạt 13/01/2017 lúc 20:25

(Mình mới giải được câu a thôi, câu b thấy khó quá! Với lại nghiệm là nguyên không âm mới giải được nha bạn.)

Xét \(x=0\) thấy vô nghiệm.

Xét \(x=1\) có nghiệm \(y=0\).

Xét \(x=2\) có nghiệm \(y=1\).

Xét \(x\ge3\). Ta xét modulo 8: \(2^x=3^y+1\) mà \(3^y\) đồng dư 1 hoặc 3 (mod 8) mà thôi.

Vậy \(3^y+1\) không chia hết cho 8 còn \(2^x\) chia hết cho 8 với mọi \(x\ge3\).

Pt vô nghiệm trong trường hợp này.

Vậy ở câu a pt chỉ có các nghiệm \(\left(x;y\right)\in\left\{\left(1;0\right),\left(2;1\right)\right\}\)

Đỗ Cao Thắng 18/01/2017 lúc 09:31

vgyfghygghyvg

yv

Nguyễn Thu Hoài 15/01/2017 lúc 20:45

Trần Quốc Đạt

Mình cũng thấy vậy

Nhưng đề thầy cho ó mỗi tìm nghiệm nguyên, chắc thầy lấy từ các bài khác nhau!

Thắng Nguyễn CTV 04/01/2017 lúc 12:01

a)\(3^x-y^3=1\)

  • Nếu x<0 suy ra y không nguyên
  • Nếu x=0 => y=0
  • Nếu x=1 =>y không nguyên
  • Nếu x=2 =>y=2
  • Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)

Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1

\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)

Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)

Từ (1) và (2) suy ra vô nghiệm

Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)

b)Xét .... ta dc x=y=0 hoặc x=1 và y=2

c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1

dam quang tuan anh 03/01/2017 lúc 22:18

Pt <=> y^3 =3x + x^3 

Vì 3x^2 + 1 > 0 mọi x nên ta có: 

(X^3 +3x ) - (3x^2 + 1) < x^3 + 3x < x^3 + 3x + (3x^2 + 1) 

<=> (x-1)^3 < y^3 < (x + 1)^3 

=> y^3 =x^3 

Pt <=>x^3 =x^3 + 3x 

<=> x = 0 

=> y= 0 Vậy ngiệm của pt là (0,0)

alibaba nguyễn 31/12/2016 lúc 12:19

Từ phương trình ta thấy rằng x phải là số lẻ

Ta có: \(x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2=2y^2-8y+3\)

\(\Leftrightarrow4k^2+4k+1=2y^2-8y+3\)

\(\Leftrightarrow2k^2+2k=y^2-4y+1\)

\(\Leftrightarrow2k\left(k+1\right)=y^2+1-4y\)

Ta nhận xét thấy VT chia hết cho 4

Vế phải không chia hết cho 4 vì số chính phương chỉ có 2 dạng là 4n và 4n+1 nên y2 + 1 - 4y không thể chia hết cho 4 được

Vậy phương trình đã cho vô nghiệm

Trà My CTV 30/12/2016 lúc 17:07

\(3xy+x-y=1\)<=>\(3\left(3xy+x-y\right)=3\)<=>\(9xy+3x-3y=3\)

<=>\(9xy+3x-3y-1=0\)<=>\(3x\left(y+1\right)-3\left(y+1\right)=0\)

<=>\(\left(y+1\right)\left(3x-3\right)=0\)<=>\(\orbr{\begin{cases}y+1=0\\3x-3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-1\\x=1\end{cases}}\)

Với y=-1 => x=0

Với x=1 => y=0

Vậy ................

Bùi Thế Hào 30/12/2016 lúc 17:15

3xy+x-y=1 <=> 3xy+x=y+1 <=> x(3y+1)=y+1

=> x=\(\frac{y+1}{3y+1}\)<=> 3.x=\(\frac{3y+3}{3y+1}=\frac{3y+1+2}{3y+1}=1+\frac{2}{3y+1}\)

Để x nguyên thì 2 chia hết cho 3y+1 => có các TH:

+/ 3y+1=-1 => y=-2/3 => Loại

+/ 3y+1=1 => y=0; => 3x=1+2=3 => x=1

+/ 3y+1=-2 => y=-1 ;  x=0

+/ 3y+1=2 => y=1/3 (Loại)

ĐS: \(\hept{\begin{cases}x=0;y=-1\\x=1;y=0\end{cases}}\)

Thắng Nguyễn CTV 11/10/2016 lúc 11:32

Ta có:

\(8x+8y+8z< 8x+9y+10z\)

\(\Rightarrow x+y+z< \frac{100}{8}< 13\)

\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)

Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)

Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)

Nhân 2 vế của (1) với 8 ta đc:

\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)

Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).

Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)

Với \(z=1\Rightarrow y=2;x=9\)

Vậy...

alibaba nguyễn 11/10/2016 lúc 09:55

Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12

100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra 
4≥y+2z≥3
Tức là 
y+2z ∈ {3;4}
Theo đề bài thì 
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra 
y+2z=4 Hay y=2; z=1
Thế ngược lại vào 
8x+9y+10z=100 tìm được x=9
Vậy  (x,y,z)=(9,2,1)

Trần Văn Thành 11/10/2016 lúc 20:20

gioi qua

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: