Giúp tôi giải toán


alibaba nguyễn 21/04 lúc 11:01

Ta có:

\(y^3=\left(x-2\right)^4-x^4\)

\(\Leftrightarrow y^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)

\(\Rightarrow\)y là số chẵn

Đặt \(y=-2k\left(k\in Z\right)\)

\(\Rightarrow-8k^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)

\(\Leftrightarrow k^3=\left(x-1\right)\left(x^2-2x+2\right)\)

Đễ dàng chứng minh được \(\left(x-1\right);\left(x^2-2x+2\right)\) nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x-1=m^3\\x^2-2x+2=n^3\end{cases}}\)

\(\Rightarrow n^3=m^6+1\)

Ta lại có: \(m^6< m^6+1\le\left(m^2+1\right)^3\)

\(\Rightarrow m^6+1=\left(m^2+1\right)^3\)

\(\Leftrightarrow m^2\left(m^2+1\right)=0\)

\(\Leftrightarrow m=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)

alibaba nguyễn 10/04/2017 lúc 17:55

\(\hept{\begin{cases}a+b+c=0\\ab+bc+ca+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2+b^2+c^2=-2\left(ab+bc+ca\right)\\-\left(ab+bc+ca\right)=3\end{cases}}\)

\(\Rightarrow a^2+b^2+c^2=6\)

\(\Rightarrow a^2\le6\)

\(\Leftrightarrow-2\le a\le2\)

 \(\Rightarrow\) a \(\in\){ -2; - 1; 0; 1; 2}

Thế a = - 2 vào hệ ban đầu ta được

\(\Rightarrow\hept{\begin{cases}b+c=2\\-2b+bc-2c+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=1\\c=1\end{cases}}\) 

Tương tự cho các trường hợp còn lại 

doanson 11/04/2017 lúc 15:43

10000

alibaba nguyễn 04/04/2017 lúc 18:30

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

Edogawa Conan 05/04/2017 lúc 06:00

Mình mới chỉ học lớp 5 thôi nên không biết gì 

~~~ Chúc các bạn học giỏi ~~~

Lê Mạnh Tiến Đạt 04/04/2017 lúc 20:42

Em mới học lớp 5 thôi nên em không biết cái gì 

~~~ Chúc chị học giỏi ~~~

Angle Love 02/08/2016 lúc 17:27

giả sử x là nghiệm nguyên

\(=>p\left(x\right)=-4x^4+2x^3-3x^2+x+1=0\)

TH1:x khác 0

=>p(x) chia hết cho x(do bằng 0 và x là số nguyên khác 0)

mà \(-4x^4+2x^3-3x^2+x\)lại chia hết cho x với x là số nguyên khác 0

=>1 chia hết cho x

=>x=-1 hoặc x=1,thay vào ta được p(1) và p(-1)khác 0 nên 1 và -1 không phải là nghiệm

TH2:nếu x=0

thay vào ta được p(0)cũng khác 0 nên 0 không phải là nghiêm

vậy đa thức p(x) không có nghiệm nguyên

Vongola Famiglia 02/08/2016 lúc 16:13

ta thấy cái khối -4x4+2x3-3x2+x>=0 

=>cả chỗ kia >0 -->vô nghiệm

Lê Mạnh Châu 04/04/2017 lúc 13:01

Bạn đi phân tích từng bước

Tiến hành cộng phép tính

                    ~~~~ Chúc bạn học tốt ~~~~

alibaba nguyễn 23/03/2017 lúc 09:52

\(\left(x+1\right)^2+\left(y-3\right)^2=5\)

Ta nhận xét VT là tổng của 2 số chính phương nên ta phải phân tích VP thành tổng của 2 số chính phương.

Mà \(5=1+4\) nên ta có

\(\left(\left(x+1\right)^2,\left(y-3\right)^2\right)=\left(1,4;4,1\right)\)

Giải ra tìm được các giá trị nguyên x, y

PS: Cái này đơn giản nên b tự làm nhé

Phạm Tâm Ngân 23/03/2017 lúc 18:15

Ta có:       

5 = 1  +  4    <=>          (x+1)2  =   1                  và                   (y-3)2     =    4

                            =>x+1=1 hoặc x+1=-1           và                =>  y-3=2 hoặc y-3=-2

                            =>x=0    hoặc x=-2               và                =>  y=5     hoặc y=1

                hay :          

                                     (x+1)2  =   4                  và                   (y-3)2     =    1

                            =>x+1=2 hoặc x+1=-2           và                =>  y-3=1 hoặc y-3=-1

                            =>x=1    hoặc x=-3                và                =>  y=4     hoặc y=2

vậy (x;y)\(\in\){(0;5);(0;1);(-2;5);(-2;1);(1;4);(1;2);(-3;4);(-3;2)}

                                 

bui thi kieu trang 123 29/03/2017 lúc 19:45

dung roi 

alibaba nguyễn 10/03/2017 lúc 09:42

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

Nguyễn Huyền Kim Ngọc 11/03/2017 lúc 10:55

Nhình bài giải rối nùi nhức đầu quá @_@

mèo simmy 11/03/2017 lúc 21:23

tớ chịu thua,bài này tớ bó tay òi bạn nào giải được ko????

alibaba nguyễn 19/11/2016 lúc 23:38

Vì đây là toán casio nên được phép đùng máy tính để giải. Gợi ý bạn cách giải:

Ta tìm phần nguyên của \(\sqrt{260110}\)là 510. 

Ta tính 260110 - 5102 = 10

Vì y là số nguyên dương nhỏ nhất để cho 

260110 - 5y là 1 số chính phương nên

5y = 10  => y = 2

=> x = 8

Hoàng Phúc CTV 20/11/2016 lúc 19:20

Nếu đc bn giải cho mk tham khảo đc k 

ngô thế trường 25/11/2016 lúc 11:27

câu trả lời là 260110 nhé bạn

alibaba nguyễn 28/02/2017 lúc 10:46

a/ \(x^3+2x^2+3x+2=y^3\)

Với \(\orbr{\begin{cases}x>1\\x< -1\end{cases}}\)thì

\(x^3< x^3+2x^2+3x+2=y^3< \left(x+1\right)^3\)

Nên không tồn tại số nguyên x, y thỏa mãn đề bài.

Từ đây ta suy ra \(-1\le x\le1\)

Với \(x=-1\Rightarrow y=0\)

\(x=0\Rightarrow y=\sqrt[3]{2}\left(l\right)\)

\(x=1\Rightarrow y=2\)

alibaba nguyễn 28/02/2017 lúc 11:03

c/ \(x^2+y^2+6y+5=0\)

\(\Leftrightarrow x^2=-y^2-6y-5\)

\(\Leftrightarrow x^2=\left(-y^2-6y-9\right)+4=-\left(y+3\right)^2+4\le4\)

\(\Leftrightarrow0\le x^2\le4\)

\(\Leftrightarrow-2\le x\le2\)

Thế vô giải tiếp đi

tuan va manh 28/02/2017 lúc 11:16

a/x=1\(\Rightarrow\)y=2

b/\(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

c/\(\Leftrightarrow\)-2\(\le\)x\(\le\)2

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: