Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Giúp tôi giải toán và làm văn


Khói 10 tháng 4 lúc 9:05
Báo cáo sai phạm

Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)

\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)

\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)

Dấu "=" xảy ra khi S=S2=S3 <=> M là trọng tâm \(\Delta ABC\)

Đọc tiếp...
Khói 9 tháng 4 lúc 22:00
Báo cáo sai phạm

Vì OI _|_ AB tại I, OK _|_ AC tại K. Do đó: \(AI=AK=\frac{a}{2}\)

Trên tia đối của tia IA lấy F sao cho IF=EK

Đặt AD=x, AE=y

Chứng minh được \(DE=\sqrt{x^2+y^2-xy}\)

Ta có: \(\frac{1}{BD}+\frac{1}{CE}=\frac{3}{a}\Rightarrow\frac{1}{a-x}+\frac{1}{a-y}=\frac{3}{a}\)

=> a2-2(x+y)a+3xy=0

Từ gt có: x+y < a; a=x+y+\(\sqrt{x^2+y^2-xy}\)

AI+AK=AD+AE+DE; DI+EK=DE

DF=DE => OI=OH => AB=MN

Từ đó chứng minh BMNC là hình thang cân

Đọc tiếp...
Khói 9 tháng 4 lúc 21:49
Báo cáo sai phạm

Ta có R là bán kính đường tròn ngoại tiếp một tam giác đều cạnh a thì \(R=\frac{a\sqrt{3}}{a}\) (*)

Dựng 2 tam giác đều BDF và CDG về phía ngoài tam giác ABC, khi đó \(\widehat{BFD}=\widehat{BED}=60^0;\widehat{CGD}=\widehat{CED}=60^o\)

=> BDEF và CDEG là các tứ giác nội tiếp 

Nên R1;R2 lần lượt là bán kính của các đường tròn ngoại tiếp các tam giác đềuy BDF và CDG

Theo (*) ta có: \(R_1=\frac{BD\sqrt{3}}{3};R_2=\frac{CD\sqrt{3}}{3}\Rightarrow R_1R_2=\frac{BD\cdot CD}{3}\)

Mặt khác \(\left(BD+CD\right)^2\ge4\cdot BD\cdot CD\)

=> BD.CD\(\le\frac{\left(BD+CD\right)^2}{4}=\frac{BC^2}{4}=\frac{3R^2}{4}\Rightarrow R_1R_2\le\frac{R^2}{4}\)

Đẳng thức xảy ra khi và chỉ khi

BD=CD, nghĩa là R1;R2 đạt giá trị lớn nhất bằng \(\frac{R^2}{4}\) khi D là trung điểm BC

Đọc tiếp...
Khói 9 tháng 4 lúc 21:26
Báo cáo sai phạm

Giả sử AB là 1 cạnh của hình tám cạnh đều, gọi AB=a.

Vẽ AK là đường co của tam giác OAB

Ta có: \(\widehat{AOB}=\frac{360^o}{8}=45^o\Rightarrow OK=AK=\sin45^o=\frac{OA\sqrt{2}}{2}=\frac{R\sqrt{2}}{2}\)

Nên KB=OB-OK=\(\frac{R\sqrt{2}}{2}-R=R\left(\frac{\sqrt{2}}{2}-1\right)\)

Xét tam giác KAB vuông tại K, theo định lý Pytago ta có:

\(AB^2=AK^2+KB^2=\left(\frac{R\sqrt{2}}{2}\right)^2+\left[R\left(\frac{\sqrt{2}}{2}-1\right)\right]^2\)

\(AB^2=R^2\left(\frac{1}{2}+\frac{1}{2}-\sqrt{2}+1\right)\)

\(\Rightarrow AB^2=\left(2-\sqrt{2}\right)R^2\)

\(\Rightarrow AB=\sqrt{2-\sqrt{2}}R\)

Đọc tiếp...
hoang viet nhat 24 tháng 8 2019 lúc 17:33
Báo cáo sai phạm

Cot B = \(\frac{AB}{AC}\Rightarrow AB=cotB.AC\)

                     \(\Rightarrow AB=2,4.5=12\left(cm\right)\)

\(BC^2=AB^2=12^2+5^2=169\)

\(\Rightarrow BC=\sqrt{169}=13cm\)

b) sin C \(\frac{AB}{BC}=\frac{12}{13}\)

                cos C = \(\frac{AC}{BC}=\frac{5}{13}\)

            tan C = \(\frac{AB}{AC}=\frac{12}{5}\)

               cot C = \(\frac{AC}{AB}=\frac{5}{12}\)

Chúc bạn học tốt !!!

Đọc tiếp...
Huỳnh Gia Âu 23 tháng 8 2019 lúc 12:13
Báo cáo sai phạm

Không dùng máy tính cầm tay nha bạn -.-

Đọc tiếp...
Yến Hải 18 tháng 8 2019 lúc 22:07
Báo cáo sai phạm

\(\cos42\approx0,743\)

\(\tan42\approx0,900\)

Vậy: Tan42 > Cos42

Đọc tiếp...
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ 25 tháng 7 2019 lúc 21:46
Báo cáo sai phạm

Xét tam giác AHB đồng dạng với tam giác CHA góc-góc ( góc AHB=góc CHA; góc BAH = góc C do cùng phụ với góc B)
=> k= AH/HC=AB/AC=HB/AH
AB/AC=5/7
=>AB/AC=HB/AH hay 5/7=HB/15 -> HB = 75/7
AH/HC=AB/AC hay 15/HC=5/7 -> HC =21

Đọc tiếp...
💋ɯɐN ɥu∀ ƃuàoH💋 24 tháng 7 2019 lúc 23:26
Báo cáo sai phạm

A B H C (P/s:Hình ảnh mang tính chất minh họa)

Giả sử \(\Delta ABC\)có: \(\widehat{CAB}=90^o;AH\perp BC;BC=26;\frac{AB}{AC}=\frac{5}{12}\)

\(\frac{AB}{AC}=\frac{5}{12}\Rightarrow\frac{AB}{5}=\frac{AC}{12}\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{AB^2+AC^2}{169}\)

Áp dụng định lí Py-ta-go vào tam giác vuông ABC có:

\(AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=26^2=676\)

\(\Rightarrow\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{676}{169}=4\)

\(\Rightarrow\frac{AB^2}{25}=4\Rightarrow AB^2=4\cdot25=100\Rightarrow AB=\sqrt{100}=10\)

\(\frac{AC^2}{144}=4\Rightarrow AC^2=144.4=576\Rightarrow AC=\sqrt{576}=24\)

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu ta được:

\(AB^2=BH.BC\Rightarrow BH=\frac{10^2}{26}=\frac{50}{13}\)

\(CH=BC-BH=26-\frac{50}{13}=\frac{288}{13}\)

Đọc tiếp...
T.Ps 21 tháng 7 2019 lúc 15:51
Báo cáo sai phạm

#)Giải :

A B C H

Lưu ý : Hình ảnh chỉ mang tính chất minh họa, không đúng 100% về kích thước 

Áp dụng hệ thức lượng vào tam giác vuông ABC :

\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\Leftrightarrow\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{576}\)

Mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)

\(\Rightarrow\hept{\begin{cases}AB=30cm\\AC=40cm\end{cases}}\)

Áp dụng định lí Py - ta - go :

\(BC^2=AB^2+AC^2\Rightarrow BC^2=30^2+40^2=2500\Rightarrow BC=\sqrt{2500}=50\)

Tiếp tục áp dụng hệ thức lượng :

\(\Rightarrow\hept{\begin{cases}BH.BC=AB^2\\CH.BC=AC^2\end{cases}\Rightarrow\hept{\begin{cases}BH=18cm\\CH=32cm\end{cases}}}\)

Vậy BH = 18cm ; CH = 32cm

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: