Đặt số cần tìm là \(\overline{ab},\left(0\le a,b\le9;a,b\inℕ;a\ne0,a+b=8\right)\)
Số sau khi đổi vị trí là \(\overline{ba}\).
Theo bài ra ta có: \(\overline{ab}-\overline{ba}=18\Leftrightarrow10a+b-\left(10b+a\right)=18\Leftrightarrow9a-9b=18\Leftrightarrow a-b=2\)
\(\Rightarrow a-\left(8-a\right)=2\Leftrightarrow2a=10\Leftrightarrow a=5\Rightarrow b=3\)(thỏa)
Áp dụng bđt Bunyakovsky dạng phân thức ta có :
\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\ge\frac{\left[\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\right]^2}{3}\)(1)
Tiếp tục sử dụng bđt Bunyakovsky dạng phân thức ta có :
\(\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\left(\frac{c}{c+a}\right)^2\ge\frac{\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\right)^2}{3}\)(2)
Đặt \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Áp dụng bđt Cauchy ta có :
\(\frac{a}{a+b}+\frac{a+b}{4a}\ge2\sqrt{\frac{a}{a+b}\cdot\frac{a+b}{4a}}=1\)
=> \(A+\frac{a+b}{4a}+\frac{b+c}{4b}+\frac{c+a}{4c}\ge3\)
=> \(A+\frac{a}{4a}+\frac{b}{4a}+\frac{b}{4b}+\frac{c}{4b}+\frac{c}{4c}+\frac{a}{4c}\ge3\)
=> \(A+\frac{3}{4}+\frac{b}{4a}+\frac{c}{4b}+\frac{a}{4c}\ge3\)
Theo Cauchy ta có : \(\frac{b}{4a}+\frac{c}{4b}+\frac{a}{4c}\ge3\sqrt[3]{\frac{b}{4a}\cdot\frac{c}{4b}+\frac{a}{4c}}=\frac{3}{4}\)
=> \(A+\frac{3}{4}+\frac{3}{4}\ge3\)=> \(A\ge\frac{3}{2}\)(3)
Từ (1), (2) và (3) => \(P\ge\frac{3}{16}\)
Đẳng thức xảy ra <=> a = b = c
Vậy MinP = 3/16 <=> a = b = c
Ta có:
\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4=\left(\frac{1}{1+\frac{b}{a}}\right)^4+\left(\frac{1}{1+\frac{c}{b}}\right)^4+\left(\frac{1}{1+\frac{a}{c}}\right)^4\)
Đặt \(\left(\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)=\left(x,y,z\right)\left(x,y,z>0\right)\) \(\Rightarrow xyz=1\)
Khi đó: \(P=\frac{1}{\left(1+x\right)^4}+\frac{1}{\left(1+y\right)^4}+\frac{1}{\left(1+z\right)^4}\)
\(\ge3\left[\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{1}{\left(1+z\right)^2}\right]^2\)
Ta có: \(\left(1+xy\right)\left(1+\frac{x}{y}\right)\ge\left(1+x\right)^2\Leftrightarrow\left(1+x\right)^2\le\frac{\left(1+xy\right)\left(x+y\right)}{y}\)( Bunyakovsky)
\(\Leftrightarrow\frac{1}{\left(1+x\right)^2}\ge\frac{y}{\left(1+xy\right)\left(x+y\right)}\) ; tương tự: \(\frac{1}{\left(1+y\right)^2}\ge\frac{x}{\left(1+xy\right)\left(x+y\right)}\)
Áp dụng BĐT Cauchy: \(\frac{1}{\left(1+z\right)^2}+\frac{1}{4}\ge2\sqrt{\frac{1}{\left(1+z\right)^2}\cdot\frac{1}{4}}=\frac{1}{1+z}\)
\(\Rightarrow\frac{1}{\left(1+z\right)^2}\ge\frac{1}{1+z}-\frac{1}{4}\)
Khi đó: \(P\ge\frac{1}{3}\left[\frac{x}{\left(1+xy\right)\left(x+y\right)}+\frac{y}{\left(1+xy\right)\left(x+y\right)}+\frac{1}{1+z}-\frac{1}{4}\right]^2\)
\(=\frac{1}{3}\left(\frac{1}{1+xy}+\frac{1}{1+z}-\frac{1}{4}\right)^2=\frac{1}{3}\left(\frac{xyz}{xyz+xy}+\frac{1}{1+z}-\frac{1}{4}\right)^2\)
\(=\frac{1}{3}\left(\frac{z}{1+z}+\frac{1}{1+z}-\frac{1}{4}\right)^2=\frac{1}{3}\left(1-\frac{1}{4}\right)^2=\frac{3}{16}\)
Dấu "=" xảy ra khi: a = b = c
Vậy Min(P) = 3/16 khi a = b = c
Bổ đề: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
1. \(\left(\sqrt{a}+\sqrt{b}\right)^2\le2\left(a+b\right)=4\Rightarrow\sqrt{a}+\sqrt{b}\le2\)
Đẳng thức xảy ra khi \(a=b=1\)
2. \(\left(\sqrt{a-1}+\sqrt{b-1}\right)^2\le2\left(a-1+b-1\right)=2\left(a+b-2\right)=2\left(4-2\right)=4\)
\(\Rightarrow\sqrt{a-1}+\sqrt{b-1}\le2\)
Đẳng thức xảy ra khi \(a=b=2\)
3,4,5 tương tự.
phiền bạn giải hộ luôn mấy bài còn lại nha, mình ngu lắm, sorry vì phiền bn
Ta có: \(P=\frac{2x^2+7x+23}{x^2+2x+10}\Leftrightarrow P\left(x^2+2x+10\right)=2x^2+7x+23\)
\(\Leftrightarrow Px^2+2Px+10P-2x^2-7x-23=0\)
\(\Leftrightarrow\left(P-2\right)x^2+\left(2P-7\right)x+\left(10P-23\right)=0\)
\(\Delta=\left(2P-7\right)^2-4\left(P-2\right)\left(10P-23\right)\ge0\)
\(\Leftrightarrow4P^2-28P+49-4\left(10P^2-43P+46\right)\ge0\)
\(\Leftrightarrow4P^2-28P+49-40P^2+173P-184\ge0\)
\(\Leftrightarrow-36P^2+145P-135\ge0\)
\(\Rightarrow36P^2-145P+135\ge0\)
\(\Leftrightarrow P^2-\frac{145}{36}P+\frac{27}{29}\ge0\)
\(\Leftrightarrow\left(P^2-2\cdot\frac{145}{72}+\frac{21025}{5184}\right)-\frac{469757}{150336}\ge0\)
\(\Leftrightarrow\left(P-\frac{145}{72}\right)^2\ge\frac{469757}{150336}\)
\(\Rightarrow-\sqrt{\frac{469757}{150336}}\le P-\frac{145}{72}\le\sqrt{\frac{469757}{150336}}\)
\(\Leftrightarrow\frac{145}{72}-\sqrt{\frac{469757}{150336}}\le P\le\frac{145}{72}+\sqrt{\frac{469757}{150336}}\)
Vậy \(Min_P=\frac{145}{72}-\sqrt{\frac{469757}{150336}}\) và \(Max_P=\frac{145}{72}+\sqrt{\frac{469757}{150336}}\)
Bất đẳng thức cần chứng minh có thể được viết lại thành: \(32\left(a^5+b^5\right)\ge2\left(a+b\right)^5\)
* Xét biểu thức: \(32\left(a^5+b^5\right)-2\left(a+b\right)^5=10\left(a-b\right)^2\left(a+b\right)\left(3a^2+3b^2+2ab\right)\ge0\forall a,b\inℝ\)do \(3a^2+3b^2+2ab=2a^2+2b^2+\left(a+b\right)^2\ge0\forall a,b\inℝ\)
Đẳng thức xảy ra khi a = b = 1
một đội công nhân theo kế hoạch mỗi ngày làm 400 chi tiết máy . do cải tiến kĩ thuật nên mỗi ngày làm được 520 chi tiết máy vì vậy đội khồn những xong kế hoạch trước hai ngày mà còn làm được thêm 40 sản phẩm . tính thời gian làm và tổng số chi tiết máy mà đội công nhann phải làm theo kế hoạch
Đọc tiếp...
...
Dưới đây là những câu có bài toán hay do Online Math lựa chọn.
....