Giúp tôi giải toán


oOo Lê Việt Anh oOo 24/05 lúc 11:34

dựng tia Bx cắt cạnh AC tại D sao cho góc CBx = 20o 
có gócBCD = 80o => góc BDC = 180o-20o-80o = 80o = góc BCD 
=> tgiác BCD cân (tại B) ; gọi H là hình chiếu của A trên Bx 
có góc ABH = 80o - 20o = 60o => HAB là nửa tgiác đều 
=> BH = AB/2 = b/2 ; AH^2 = 3b^2/4 
BD = BC = a => DH = BH-BD = b/2 - a 
hai tgiác cân BCD và ABC đồng dạng => CD/BC = BC/AB 
=> CD = BC^2/AB = a^2/b 
=> AD = AC - CD = b - a^2/b 

 cho tgiác vuông HAD ta có: AD^2 = AH^2 + DH^2 
thay số từ các tính toán trên: 
(b - a^2/b)^2 = 3b^2/4 + (b/2 - a)^2 
<=> b^2 + a^4/b^2 - 2a^2 = 3b^2/4 + b^2/4 + a^2 - ab 
<=> a^4/b^2 = 3a^2 - ab 
<=> a^3/b^2 = 3a - b 
<=> a^3 = 3a.b^2 - b^3 
<=> a^3 + b^3 = 3a.b^2 đpcm 
 

Forever Love You 24/05 lúc 11:16

tam giac ABC cân tại  A có góc BCA =20 độ nên ABC =ACB= 80 ĐỘ

TRÊN CẠNH AC lấy D sao cho ABD=60 độ, khi đó DBC =20 độ nên BDC =80 ĐỘ 

Lê Minh Đức 24/05 lúc 17:46

A C B M N I

Qua I vẽ đường thẳng vuông góc với CI cắt AC. BC lần lượt tại M, N. Khi đó CM=CN, IM=IN.

Ta chứng minh được \(\widehat{AIB}=180-\widehat{BAI}-\widehat{ABI}=180-\frac{BAC}{2}-\frac{ABC}{2}=\frac{360-\left(ABC+BÃC\right)}{2}\)

\(=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)

\(AMI=180-CMN=180-\frac{180-ACB}{2}=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)

Chứng minh tương tự ta cũng có: \(BNI=90+\frac{ACB}{2}\)

Từ đó suy ra: \(\Delta AIB\infty\Delta AMI\left(g.g\right)\Rightarrow\frac{AI}{AM}=\frac{AB}{AI}\Rightarrow AI^2=AB.AM\Rightarrow\frac{AI^2}{AB.AC}=\frac{AM}{AC}\) 

\(\Delta AIB\infty\Delta INB\left(g.g\right)\Rightarrow\frac{BI}{IN}=\frac{AB}{BN}\Rightarrow BI^2=AB.BN\Rightarrow\frac{BI^2}{AB.BC}=\frac{BN}{BC}\)

\(\Delta AMI\infty\Delta INB\Rightarrow\frac{AM}{IN}=\frac{IM}{BN}\Rightarrow AM.BN=IM.IN=IM^2\)

Áp dụng định lí Py- ta-go vào tam gác ICM ta có:

\(IM^2+CI^2=CM^2\Rightarrow BN.AM+CI^2=CM.CN\Rightarrow BN.AM+CN.AM+CI^2=CM.CN+CN.AM\)

\(\Rightarrow BC.AM+CI^2=CN.AC\Rightarrow BC.AM+CI^2+AC.BN=CN.AC+AC.BN\)

\(\Rightarrow BC.AM+BN.AC+CI^2=AC.BC\Rightarrow\frac{AM}{AC}+\frac{BN}{BC}+\frac{CI^2}{AC.BC}=1\)

\(\Rightarrow\frac{AI^2}{AB.AC}+\frac{BI^2}{BA.BC}+\frac{CI^2}{CA.CB}=1\)

hoy 02/05/2017 lúc 10:29

Xét tam giác AED Và Tam giác ABC có  : Góc A chung và \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5},\frac{AD}{AC}=\frac{8}{20}=\frac{2}{5}\) suy ra tam giác AED đồng dạng với tam giác ABC (cgc)  suy ra \(S_{AED}:S_{ABC}=\left(\frac{AE}{AB}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

nguyễn trường sinh 21/04/2017 lúc 11:26

Dễ thôi 

ta có\(\Delta HBE\infty\Delta ABF\)(\(\widehat{BHE}=\widehat{BAF}=90^0\);\(\widehat{EBH}=\widehat{ABF}\))

\(\Rightarrow\widehat{BEH}=\widehat{AFB}\)

Lại có:\(\widehat{BEH}=\widehat{AEF}\)

\(\Rightarrow\widehat{AFE}=\widehat{AEF}\)

Vậy tam giác AEF cân tại A

oát đờ 17/04/2017 lúc 22:46

Mình biết rồi. Nhưng giờ phải chứng minh giao điểm H của các đường cao của tam giác ABC giao điểm là đường phân giác trong của tam giác DEF. Bạn đọc lại đề đi.

Phan Quang An 17/04/2017 lúc 22:33


Lại còn phải cm định lý à, xem lại lớp 7. Trong tam giác, 3 đường cao của tam giác cùng đi qua 1 điểm

Lê Thy Kiều Diễm 24/11/2014 lúc 21:48

BC2=AC2+AB2

=> (BD+DC)2=(AF+FC)2+(AE+EB)2

=> BD2+DC2+2BD.DC = (AF2+FC2+2AF.FC)+(AE2+EB2+2AE.EB)

=> (DE2+EB2)+(FC2+FD2)+2BD.DC=(AF2+EB2)+(FC2+AE2) + 2AF.FC+2AE.EB

=> BD.CD = AF.FC+AE.BE

Trần Thùy Dung 07/01/2015 lúc 19:22

BC2=AC2+AB2

=> (BD+DC)2=(AF+FC)2+(AE+EB)2

=> BD2+DC2+2BD.DC = (AF2+FC2+2AF.FC)+(AE2+EB2+2AE.EB)

=> (DE2+EB2)+(FC2+FD2)+2BD.DC=(AF2+EB2)+(FC2+AE2) + 2AF.FC+2AE.EB

=> BD.CD = AF.FC+AE.BE

vu 10/04/2017 lúc 21:51

Em mới lớp 8 nên trình bày hơi lỗi xin anh thông cảm.

Xét tam giác HAC và tam giác ABC, ta có:

Góc C: góc chung

góc AHC = góc BAC (=90 độ)

Do đó: tam giác HAC đồng dạng với tam giác ABC

\(\Rightarrow\)\(\frac{HA}{HC}=\frac{AB}{AC}\Rightarrow AH=\frac{ABxHC}{AC}\left(1\right)\)

Xét tam giác HBA và tam giác ABC, ta có:

Góc B: góc chung

góc AHB = góc BAC (=90 độ)

Do đó: tam giác HAC đồng dạng với tam giác ABC

\(\Rightarrow\)\(\frac{HA}{HB}=\frac{AC}{ÁB}\Rightarrow AH=\frac{HBxAC}{AB}\left(2\right)\)

Từ (1) và (2) suy ra:

\(\frac{HBxAC}{AB}=\frac{HCxAB}{AC}\Rightarrow\frac{\left(AB\right)^2}{\left(AC\right)^2}=\frac{HB}{HC}=\frac{9}{4}\Rightarrow\frac{AB}{AC}=\frac{3}{2}\)

VÌ AD là đường phân giác của tam giác ABC nên:

\(\frac{DC}{DB}=\frac{AC}{AB}=\frac{2}{3}\)

Vậy \(\frac{DC}{DB}=\frac{2}{3}\)

vu 10/04/2017 lúc 21:51

k cho em nha :V :D

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: