Giúp tôi giải toán và làm văn


Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.

Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.

Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.

Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.

Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .

Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.

Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .

Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé. 

Đọc tiếp...

Được cập nhật 29 tháng 3 lúc 9:23

Câu hỏi tương tự Đọc thêm Báo cáo
Thanh Tùng DZ CTV 28 tháng 3 lúc 15:52
Báo cáo sai phạm

A B C H M O G N

Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.

M là trung điểm của BC và HN nên BNCH là hình bình hành

\(\Rightarrow NC//BH\)

Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O ) 

Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)

M là trung điểm BC nên OM \(\perp\)BC

Xét \(\Delta AHG\)và \(\Delta OGM\)có :

\(\widehat{HAG}=\widehat{GMO}\)\(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)

\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng

Đọc tiếp...
zZz Cool Kid_new zZz CTV 31 tháng 3 lúc 15:55
Báo cáo sai phạm
Thanh Tùng DZ CTV 28 tháng 3 lúc 21:50
Báo cáo sai phạm

A B C D M N P Q E F T S

gọi E,F,T lần lượt là trung điểm của AB,CD,BD

Đường thẳng ME cắt NF tại S

Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )

Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)

Tương tự , \(NF\perp CD;\)\(TQ//CD\)

\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )

\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)

Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )

Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)

Đọc tiếp...
Đặng Khánh Linh 10 tháng 2 lúc 10:45
Báo cáo sai phạm

Bạn tự vẽ hình nhé

                                                Bài làm

Gọi D là trung điểm của OC

Vì AD là đường trung truyến của tam giác AOC, mà N là trọng tâm 

Nên \(ND=\frac{1}{3}AD\)( t/c đường trung tuyến )

Xét tam giác OBC có BD là đường trung tuyến, mà M là trọng tâm

Nên \(MD=\frac{1}{3}BD\)( t/c đường trung tuyến )

Xét tam giác ADB có\(\frac{ND}{AD}=\frac{MD}{BD}=\frac{MN}{AB}=\frac{1}{3}\)( Định lý Talet )

Bạn làm tương tự đối với 2 cạnh còn lại của tam giác MNP là MP và NP

Ta được \(\frac{MP}{AC}=\frac{1}{3}\)  ;  \(\frac{NP}{BC}=\frac{1}{\text{3}}\)

Từ đó suy ra \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}=\frac{1}{3}\)

\(\Rightarrow\)Tam giác MNP đồng dạng với ABC

Bạn nhớ soát lại bài. Có thể mình làm chưa đúng. Bạn nhé!

Đọc tiếp...
Nguyễn Linh Chi Quản lý 6 tháng 2 lúc 15:37
Báo cáo sai phạm

A B C D H G F E O I

Kẻ OI vuông góc với AB tại I

a) Ta có: 

OI // GF => \(\frac{AI}{AF}=\frac{OI}{GF}\)

OI//HE => \(\frac{BO}{BH}=\frac{BI}{BE}=\frac{OI}{HE}\)

mà HE = GF 

=> \(\frac{BO}{BH}=\frac{AI}{AF}=\frac{BI}{BE}=\frac{AI+BI}{AF+BE}=\frac{AB}{AB+EF}\)

=> \(\frac{BH}{BO}=\frac{AB+EF}{AB}=1+\frac{EF}{AB}=1+\frac{HE}{BC}\)vì ABCD; FGHE là hình vuông

=> \(\frac{HE}{BC}=\frac{BH}{BO}-1=\frac{BH-BO}{BO}=\frac{OH}{OB}\)

Xét \(\Delta\)OHE và \(\Delta\)OBC có:

^OHE = ^OBC ( HE//CB; so le trong )

\(\frac{HE}{BC}=\frac{OH}{OB}\)

=> \(\Delta\)OHE ~ \(\Delta\)OBC 

b)  \(\Delta\)OHE ~ \(\Delta\)OBC 

=> ^HEO = ^BCO = ^BCE 

mà E và O nằm cùng phía so với BC

=> C; O ; E thẳng hàng

=> CE đi qua O

Chứng minh tương tự như câu a với  \(\Delta\)OAD ~ \(\Delta\)OGF

=> D; O; F thẳng hàng

=> DF đi qua O 

Đọc tiếp...
Nguyễn Linh Chi Quản lý 5 tháng 2 lúc 12:47
Báo cáo sai phạm

A B C D P I a a a a/2 2a/3 a/3 3a/2

Kéo dài AM cắt DC tại P

VÌ ABCD là hình vuông

=> Đặt: AB = BC = CD = DA = a

=> BM = \(\frac{a}{3}\); CN = \(\frac{a}{2}\)

=> MC = BC - BM = \(\frac{2a}{3}\)

+) \(\Delta\)ABM ~ \(\Delta\)PCM  ( tự chứng minh )

=> \(\frac{AB}{PC}=\frac{BM}{MC}\)

=> \(\frac{a}{PC}=\frac{\frac{a}{3}}{\frac{2a}{3}}=\frac{1}{2}\)=> PC = 2a 

=> PN = PC - NC = 2a - \(\frac{a}{2}\)\(\frac{3a}{2}\)

+) \(\Delta\)ABI ~ \(\Delta\)PNI ( tự chứng minh )

=> \(\frac{AB}{PN}=\frac{AI}{IP}\)

=> \(\frac{AI}{PI}=\frac{a}{\frac{3a}{2}}=\frac{2}{3}\)(1)

mà \(AI+PI=AP=\sqrt{AD^2+DP^2}=\sqrt{a^2+9a^2}=\sqrt{10}a\)( DP = DC + CP = 3a) (2)

Từ (1); (2) => \(\hept{\begin{cases}PI=\frac{3\sqrt{10}}{5}\\AI=\frac{2\sqrt{10}}{5}\end{cases}}\)

=> \(\frac{IP}{CP}=\frac{\frac{3\sqrt{10}a}{5}}{2a}=\frac{3}{\sqrt{10}}\)

\(\frac{CP}{MP}=\frac{2a}{\sqrt{MC^2+CP^2}}=\frac{2a}{\frac{2\sqrt{10}}{3}a}=\frac{3}{\sqrt{10}}\)

Xét \(\Delta\)ICP và \(\Delta\)CMP có:

\(\frac{IP}{CP}=\frac{CP}{MP}\)( = \(\frac{3}{\sqrt{10}}\))

và ^IPC = ^CPM 

=> \(\Delta\)ICP ~ \(\Delta\)CPM

=> ^CIP = ^MCP = 90\(^o\)

=> ^AIC = 90\(^o\)

Gọi O là giao điểm của AC và BD => O cách đều 4 điểm A, B, C, D (1)

Xét \(\Delta\)AIC vuông tại I có: O là trung điểm AC

=> O I = OA = OC (2)

Từ (1); (2) 

=> O cách đều 5 điểm A, B, C, D, I

Đọc tiếp...
Hồ Văn Đạt 5 tháng 2 lúc 16:22
Báo cáo sai phạm
Phúc Nightcore 4 tháng 2 lúc 14:19
Báo cáo sai phạm

Nối M với C ; B với P ; N với A
Xét tam giác OMC có : MP là đường trung tuyến ứng với cạnh OC
=> S MOP = S MCP = 1/2. S OMC ( t/c đường trung tuyến trong tam giác )
Xét tam giác AOC có : CM là đường trung tuyến ứng với cạnh OA
=> S OCM = S ACM = 1/2. S OAC ( t/c đường trung tuyến của tam giác )
=> S OMP = 1/4.S OAC
Tương tự CM được S ONP = 1/4 S OBC ; S OMN = 1/4. S OAB
=> S OMP + S OMN + S ONP = 1/4. S OAC + 1/4. S OAB + 1/4 . S OMN
=> S MNP = 1/4. S ABC
=> S MNP / S ABC = 1/4

Đọc tiếp...
Đàm Quỳnh Chi 4 tháng 2 lúc 14:02
Báo cáo sai phạm

Xét tam giác PAC,ta có:

{MP=MAOP=OC{MP=MAOP=OC

=>MP = 1212 AC

Tam giác PBC và AOB tương tự

=> Tam giác MNP đồng dạng với tam giác ABC

=> Chu vi tam giác MNP = 54325432 cm

   LÀM LIỀU !!

Đọc tiếp...
Nguyễn Linh Chi Quản lý 3 tháng 2 lúc 15:22
Báo cáo sai phạm

A B C D

Kẻ tia phân giác trong ^A cắt BC tại D

=> ^BAC = 2. ^DAC 

=> ^ABC = ^DAC 

xét \(\Delta\)ABC  và \(\Delta\)DAC có:

^ABC = ^DAC ( chứng minh trên )

^ACB = ^DCA 

=> \(\Delta\)ABC ~ \(\Delta\)DAC 

=> \(\frac{AC}{DC}=\frac{BC}{AC}\Rightarrow DC=\frac{AC^2}{BC}=\frac{36^2}{48}=27\)

=> BD = 48 - 27 = 21

Ta có: AD là phân giác ^BAC của \(\Delta\)ABC 

=> Ta có tỉ lệ: \(\frac{AB}{AC}=\frac{DB}{DC}\Rightarrow\frac{AB}{36}=\frac{21}{27}\)

=> AB = 21.36:27 = 28 .

Đọc tiếp...
Uyên CTV 3 tháng 2 lúc 9:24
Báo cáo sai phạm

1, tam giác ABC cân tại A (gt)

AM là đường trung tuyến

=> AM đồng thời là phân giác của góc BAC(đl)

=> góc CAM = góc BAM (đn)

có góc CAM + góc BAM = góc BAC 

có CAM = 30 (gt)

=> góc BAC = 60 

tam giác ABC cân tại A (gT) => góc ACB = (180 - BAC) : 2  (tính chất)

=> góc ACB = 60 

=> tam giác ABC đều

=>  AC = BC (đn)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: