Giúp tôi giải toán và làm văn


Michiel Girl Mít ướt 24 tháng 3 2015 lúc 10:33
Báo cáo sai phạm

 Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

 

Đọc tiếp...
phung viet hoang 24 tháng 3 2015 lúc 10:24
Báo cáo sai phạm

Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.

Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư ∈ { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có
ít nhất 2 số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ⇒ ĐPCM.

Đọc tiếp...
Michiel Girl Mít ướt 24 tháng 3 2015 lúc 10:34
Báo cáo sai phạm

vậy cho mk hỏi: đpcm là j`

Đọc tiếp...
ronaldoxunghe 26 tháng 6 2015 lúc 8:09
Báo cáo sai phạm

Ta sẽ dùng phương pháp phản đề :

Lấy 5 số bất kì :1,2,3,4,5 là 5 số nguyên dương (5 số nhỏ nhất khác nhau)

Lấy 26 số nguyên âm lớn nhất : -1

Tổng 31 số đó là : 1+2+3+4+5+-1.26 = 15+-26=-11

Mà -11 không là 2 số nguyên dương (trái đề bài)

Vậy tổng 31 số đó có thể là 1 số nguyên dương hoặc không là 1 số nguyên dương

Đọc tiếp...
Huỳnh Văn Hiếu 26 tháng 6 2015 lúc 8:07
Báo cáo sai phạm

Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kỳ trong chúng sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn 30 số chi làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương.

Đọc tiếp...
Huỳnh Văn Hiếu 26 tháng 6 2015 lúc 8:06
Báo cáo sai phạm

Trong 31 số đã cho có ít nhất 1 số là số dương (vì nếu 31 số đã cho đều âm thì tổng của 5 số bất kỳ không thể là 1 số dương)

Tách riêng số dương đó ra còn 30 số, nhóm 5 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương.

=> Tổng của 30 số là 1 số dương cộng thêm 1 số dương đã tách.

Vậy tổng của 31 số đó là 1 số dương

Đọc tiếp...
王俊凯 ( TBG ) 11 tháng 2 lúc 16:08
Báo cáo sai phạm

Gọi A là một nhà Toán học nào đó trong 17 nhà toán học, thì A phải trao đổi với 16 người còn lại về 3 vấn đề khoa học ( ký hiệu là vấn đề I, II, III )

     Vì 16 = 3.5 + 1 nên A phải trao đổi với ít nhất 5 + 1 = 6 nhà toán học khác về cùng 1 vấn đề ( Theo nguyên lý dirichlet )

 Gọi 6 nhà Toán học cùng trao đổi với A về 1 vấn đề ( Chẳng hạn là vấn đề I ) là A1, A2,....,A6. Ta thấy 6 nhà toán học này lại trao đổi với nhau về 3 vấn đề nên có 2 khả năng xảy ra :

(1) Nếu có 2 nhà Toán học nào đó cùng trao đổi với nhau về vấn đề I, thì cùng với A sẽ có 3 nhà Toán học cùng trao đổi về vấn đề I .

(2) Nếu không có 2 nhà Toán học nào cùng trao đổi với nhau về vấn đề I , thì 6 nhà Toán học này chỉ trao đổi với nhau về 2 vấn đề II , III . Theo nguyên lý Dirichlet, có ít nhất 3 nhà Toán học cùng trao đổi với nhau về 1 vấn đề ( II hoặc III ).

     Vậy luôn có ít nhất 3 nhà Toán học trao đổi với nhau về cùng một vấn đề

Đọc tiếp...
王俊凯 ( TBG ) 3 tháng 2 lúc 12:30
Báo cáo sai phạm

giải sử 69 số đã cho là 1 < a1 < a2 < ..... < a69 < 100. Khi đó a1 < 32. xét hai dãy sau :

1 < a1 + a3 < a1 + a4 < ....< a1 + a69 < 132 ( 1 )

< a3 - a2 < a4 - a2 < ....< a69 - a2 < 132 ( 1 )

từ ( 1 ) và ( 2 ) ta có 134 số hạng có giá trị từ 1 đến 132, => có 2 số bằng nhau mỗi số thuộc một dãy, chẳng hạn: a1 + am = an - a2 ( với 3 < m < n < 69 ), tức là ta tìm được 4 số a1, a2, an , am với a1 < a2 < am mà a1 + a2 + am = an ( đpcm )

Đọc tiếp...
Nguyen Quang Khai 1 tháng 2 lúc 10:52
Báo cáo sai phạm

44hs tro len thoi

k di

Đọc tiếp...
Nobi Nobita 1 tháng 2 lúc 10:53
Báo cáo sai phạm

Ta có:1000:23=43(dư 11)

vÌ thế nên phải có ít nhất 1 lớp có 44 học sinh trở lên

Happy New Year          tk cho mình

Đọc tiếp...
Nobi Nobita 1 tháng 2 lúc 11:06
Báo cáo sai phạm

tk cho mk

Đọc tiếp...
Không cân biết tên 26 tháng 1 lúc 20:19
Báo cáo sai phạm
Chia 52 số nguyên tùy ý cho 100, ta có thể có các số dư từ 0, 1, 2, …, 99. Ta phân các số dư thành các nhóm sau: {0}; {1, 99}; …, {49, 51}, {50}. Ta có tất cả 51 nhóm và khi chia 52 số cho 100 ta có 52 số dư. Theo nguyên lí Dirichlet sẽ có 2 số dư cùng thuộc một nhóm. Ta có hai trường hợp:Trường hợp 1: Hai số dư giống nhau, suy ra hiệu hai số có hai số dư tương ứng đó sẽ chia hết cho 100Trường hợp 2: Hai số dư khác nhau, suy ra tổng của hai số có hai số dư tương ứng đó sẽ chia hết cho 100
Đọc tiếp...
Không cân biết tên 26 tháng 1 lúc 20:18
Báo cáo sai phạm

Nếu có 2 số cùng số dư khi chia cho 100 ta có dpcm. Giả sử không có 2 số nào cùng số dư khi chia cho 100. Khi đó có ít nhất 51 số khi chia cho 100 có số dư khác 50 là a1,a2,...,a51

đặt bi=ai (1i51). Xét 102 số ai và bi. Theo Dirichlet thì tồn tại ij sao cho aibj (mod 100). Suy ra 

Đọc tiếp...
Nguyen ngoc dat 25 tháng 10 2017 lúc 20:07
Báo cáo sai phạm

 a ) Vì 30 : 4 = 7 ( dư 2 ) nên sẽ có ít nhất 1 tổ có 8 học sinh

b ) 1 năm có 12 tháng và 30 : 12 = 2 ( dư 6 ) nên có ít nhất 3 bạn cùng tháng sinh

c ) Vì 30 : 8 = 3 ( dư 6 ) nên có ít nhất 1 nhóm có 4 bạn 

Đọc tiếp...
chép mạng 17 tháng 1 lúc 17:49
Báo cáo sai phạm

7a5 hiểu bài dưới điểm danh

Đọc tiếp...
Lượng Ledu 9 tháng 1 lúc 13:31
Báo cáo sai phạm

Sửa khúc cuối nhé!: Gọi hai số đó là \(a_n;101-a_m\left(1\le m;n\le51\right)\Rightarrow a_n=101-a_m\)hay \(a_m+a_n=101\)vậy ta có đpcm

Đọc tiếp...
Lượng Ledu 8 tháng 1 lúc 21:18
Báo cáo sai phạm

Gọi 51 số đó là a1;a2;a3;...;a50;a51

Không làm mất tính tổng quát, ta giả sử \(a_1< a_2< a_3< ...< a_{51}\)(nhóm số 1 có 51 số)

Xét nhóm số thứ 2 có 51 hiệu: \(100-a_1>100-a_2>100-a_3>...>100-a_{51}\)

Tổng cộng 2 nhóm có 102 số mà 102 số này không quá 100 và khác 0 nên chúng nhận các giá trị 1;2;3;...;100 có 100 giá trị. Vậy theo nguyên lí Đi-rích-lê thì có [102/100]+1=2 số nhận cùng 1 giá trị. Mà hai số này hiển nhiên không thuộc cùng 1 nhóm nên nó sẽ thuộc hai nhóm khác nhau. Gọi  chúng là 101-\(a_m\)=\(a_n\) suy ra 100=\(a_m+a_n\)hay ta có đpcm

Đọc tiếp...
♍ - Virgo - Xử Nữ 2 tháng 1 lúc 20:48
Báo cáo sai phạm

vì không có ai dưới điểm 2 và có 2 học sinh được điểm 10 , suy ra :

số học sinh có số điểm kiểm tra từ 2 đến 9 điểm là; 45 - 2 = 43 ( học sinh )

ta có : 8.5 + 3 . 

như vậy , khi phân 43 học sinh vào 8 loại điểm kiểm tra ( từ 2 đến 9 điểm ) thì theo nguyên lý Dirichlet luôn tồn tại 5 + 1 = 6 học sinh có điểm kiểm tra giống nhau ( đpcm ) 

Đọc tiếp...
Kẻ Bí Mật 18 tháng 5 2015 lúc 9:01
Báo cáo sai phạm

Đặt S1 = a1 ; S2 = a1+a2; S3 = a1+a2+a3; ...; S10 = a1+a2+ ... + a10 
...Xét 10 số S1, S2, ..., S10.Có 2 trường hợp : 
...+ Nếu có 1 số Sk nào đó tận cùng bằng 0 (Sk = a1+a2+ ... +ak, k từ 1 đến 10) ---> tổng của k số a1, a2, ..., ak chia hết cho 10 (đpcm) 
...+ Nếu không có số nào trong 10 số S1, S2, ..., S10 tận cùng là 0 ---> chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau.Ta gọi 2 số đó là Sm và Sn (1 =< m < n =< 10) 
...Sm = a1+a2+ ... + a(m) 
...Sn = a1+a2+ ... + a(m) + a(m+1) + a(m+2) + ... + a(n) 
...---> Sn - Sm = a(m+1) + a(m+2) + ... + a(n) tận cùng là 0 
...---> tổng của n-m số a(m+1), a(m+2), ..., a(n) chia hết cho 10 (đpcm) 

 

Đọc tiếp...
Huỳnh Văn Hiếu 29 tháng 6 2015 lúc 8:29
Báo cáo sai phạm

Trong 31 số đã cho có ít nhất 1 số là số dương (vì nếu 31 số đã cho đều âm thì tổng của 5 số bất kỳ không thể là 1 số dương)

Tách riêng số dương đó ra còn 30 số, nhóm 5 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương.

=> Tổng của 30 số là 1 số dương cộng thêm 1 số dương đã tách.

Vậy tổng của 31 số đó là 1 số dương

Đọc tiếp...
Nguyễn Nam Cao 29 tháng 6 2015 lúc 8:31
Báo cáo sai phạm

Cách 1 :Trong 31 số đã cho có ít nhất 1 số là số dương (vì nếu 31 số đã cho đều âm thì tổng của 5 số bất kỳ không thể là 1 số dương)

Tách riêng số dương đó ra còn 30 số, nhóm 5 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương.

=> Tổng của 30 số là 1 số dương cộng thêm 1 số dương đã tách.

Vậy tổng của 31 số đó là 1 số dương

Cách 2 :Trong các số đã cho ít nhất có 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 
số bất kỳ trong chúng sẽ là số âm trái với giả thiết. 
Tách riêng số dương đó còn 30 số chi làm 6 nhóm. Theo đề bài tổng các số của mỗi nhóm đều là số 
dương nên tổng của 6 nhóm đều là số dương và do đó tổng của 31 số đã cho đều là số dương. 

Đọc tiếp...
chuvanan 14 tháng 12 2015 lúc 21:59
Báo cáo sai phạm

huỳnh văn hiếu _ vì là 31 số nguyên bất kì nên biết đâu lại có 1số nguyên âm lớn hơn tổng của tất cả các số còn lại thì sao

Đọc tiếp...
NTN vlogs 30 tháng 12 2018 lúc 14:31
Báo cáo sai phạm

Ta có số trận đã đấu của mỗi người có thể là 0, 1, 2, 3, 4. Nhưng vì không thể có cùng lúc một người đã đấu 4 trận và một người chưa đấu trận nào

=> có tối đa 4 loại số trận đã đấu.

...............

Đọc tiếp...
Darwin Watterson 8 tháng 11 2018 lúc 21:02
Báo cáo sai phạm

Ta có số trận đã đấu của mỗi người có thể là 0, 1, 2, 3, 4. Nhưng vì không thể có cùng lúc một người đã đấu 4 trận và một người chưa đấu trận nào

=> có tối đa 4 loại số trận đã đấu.

Vận dụng nguyên lý chuồng bồ câu ta có ít nhất có 2 người có cùng số trận đã đấu.

Đọc tiếp...
Tran Ba 20 tháng 11 2016 lúc 13:31
Báo cáo sai phạm

Lập dãy số :35;36;37;.....;3106

Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.

Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))

Ta có:(13m-13n)chia hết cho 100

\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100

Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100

\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01

Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01

Đọc tiếp...
Trần Công Ẩn 1 tháng 1 2017 lúc 19:16
Báo cáo sai phạm

ko co so nao

Đọc tiếp...
Nguyễn Trọng Hoàng 1 tháng 1 2017 lúc 20:08
Báo cáo sai phạm

và là 1 chữ số tận cùng

Đọc tiếp...
Nguyễn Trọng Hoàng 1 tháng 1 2017 lúc 20:07
Báo cáo sai phạm

có nếu số mũ là chẵn

Đọc tiếp...
giang ho dai ca 12 tháng 5 2015 lúc 14:16
Báo cáo sai phạm

Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .

Nếu một trong các số trên chia hết cho 1995 thì dễ dàng có đpcm.

Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 sẽ chỉ có 1994 khả năng

dư là 1 ; 2 ; 3 ; ... ; 1994.

Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia

cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là :

Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).

đúng cái nhé

Đọc tiếp...
Sakura 21 tháng 8 2016 lúc 21:31
Báo cáo sai phạm

mình quên câu này dễ quá nên các bạn đừng trả lời ! nhéeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees

Đọc tiếp...
Vũ Hồng Phúc 3 tháng 1 2017 lúc 19:40
Báo cáo sai phạm

làm thê nào ?!?!?!

Đọc tiếp...
Witch Roses 11 tháng 4 2015 lúc 22:20
Báo cáo sai phạm

ta thấy 1 số tự nhiên khi chia cho 6 có 6 khả năng dư:0,1,2,3,4,5,

có 6kn dư mà có 7 số=>theo nguyên lí direchlet có ít nhất hai số có cùng số dư

khi đó hiệu chúng sẽ chia hết cho6

 

Đọc tiếp...
Le Hai Nam 10 tháng 12 2017 lúc 7:08
Báo cáo sai phạm

Ta thay 1 so tu nhien khi chia cho 6 co kha nang du 0;1;2;3;4;5

Co 6 kn du ma co 7 so => theo nguyen li direchlet co it nhat 2 so co cung so du

Khi do hieu cua chung se chia het cho 6 

Đọc tiếp...
Online Math 17 tháng 12 2017 lúc 11:24
Báo cáo sai phạm

K cho tôi thì tôi k lại

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: