Nguyên lý Direchlet - Hỏi đáp và thảo luận về Nguyên lý Direchlet - Giúp tôi giải toán - Học toán với OnlineMath

Giúp tôi giải toán và làm văn


Wrecking Ball CTV 05/08/2018 lúc 13:16
Báo cáo sai phạm

a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương

Bớt số dương đó ra

=> Còn lại 12 số

. Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số

=> Giá trị mỗi nhóm là số dương

=> Tổng 12 số đó dương

Cộng với số dương đã bớt ra

=> Tổng của 13 số đã cho là dương

Đọc tiếp...
Võ Thị Khánh Ly 05/08/2018 lúc 13:16
Báo cáo sai phạm

Có mười ba số nguyên bất kì mà tỏng đó tổng của bốn số bất kì đều là dương

Nên suy ra mười ba số đó đều là số dương

Suy ra tổng của mười ba số đó là một số nguyên dương

Đọc tiếp...
Tôn Thị Thanh Hoài 05/08/2018 lúc 15:15
Báo cáo sai phạm

Số dương

Đọc tiếp...
zZz Phan Cả Phát zZz CTV 05/10/2016 lúc 21:40
Báo cáo sai phạm

Cách 2 

Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.

Có 11 số nhưng chỉ có 10 số dư

=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.

Vậy hiệu 2 số này sẽ chia hết cho 10.

Mà những số có chữ số tận cùng là 0 thì chia hết cho 10 

=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.

Vậy trong 11 STN...

Có thể mình trình bày chưa chính xác lắm, bạn có thể sửa lại cách trình bày. ^ - ^

Đọc tiếp...
zZz Phan Cả Phát zZz CTV 05/10/2016 lúc 21:39
Báo cáo sai phạm

Theo Nguyên lí Đi-rich-lê thì trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11 nên =>trong 12 số tự nhiên bất kì bao giờ ta cũng chọn ra được 2 số mà hiệu của chúng chia hết cho 11

Đọc tiếp...
võ thị huyền trang 31/05/2018 lúc 08:04
Báo cáo sai phạm

ông nội giống mệ ngoại

Đọc tiếp...
Trần Thị Loan Quản lý 03/07/2015 lúc 19:21
Báo cáo sai phạm

Xét dãy số sau:

2003; 20032003;....; 20032003...2003 (Có n số 2003; n > 2004 )

Nhận xét: các số trong dãy đều là các số lẻ nên không chia hết cho 2004 

=> Số bất kì trong dãy chia cho 2004 có thể dư 1;2;3;..; 2003

Dãy trên có nhiều hơn 2003 số nên theo Nguyên lý Dirichlê => có ít nhất 2 số chia cho 2004  có cùng số dư

=> số có dạng 20032003...2003...2003 (có 2003 + m số 2003 ) và số 2003..2003 (có m số 2003 ) có cùng số dư

=> Hiệu của chúng chia hết cho 2004  

Hay số 20032003...200300..00 (có 2003 số 2003 ) chia hết cho 2004

Đọc tiếp...
Đinh Tuấn Việt 03/07/2015 lúc 19:01
Báo cáo sai phạm

Xét dãy số gồm 2005 số hạng: 
2003, 20032003, ...2003.....(2003 con số 2003).. 2003, 
- xét phép chia từng số hạng của dãy trên cho số 2004 (2005 phép chia được thực hiện), khi đó chỉ có thể xảy ra 2004 số dư 1, 2, 3.....2004 ( không có dư 0 vì 2003..2003 không thể chia hết cho 2004 lí do 2004 là số chẳn chia hết cho 2, trong khi số có dạng 2003...2003 lẻ, không thể chia hết cho 2 => tất nhiên k thể chia hết cho 2004). 
- từ suy luận trên ta thấy có ít nhất hai phép chia trong 2005 phép chia có cùng số dư, 
giả sử hai số hạng thỏa đk trên là A và B (A<B) 
hay gọi dạng cụ thể là: A=2003...2003 (n số 2003), B=2003..2003 (m số 2003), m>n 
khi đó xét số D=B-A=2003...2003..000 (có n số 2003 và m-n số 0 ) , rõ ràng là D chia hết cho 2004 

Kết luận : tồn tại số theo đề bài cần chứng minh

Đọc tiếp...
thien ty tfboys 25/06/2015 lúc 19:37
Báo cáo sai phạm

Trong 31 số trên phải có ít nhất 1 số âm không thì tổng 3 số bất kì đều là số dương trái với đề bài. Bỏ riêng số âm vùa nói trên ra. ta còn lại 30 số chia làm 10 cặp mỗi cặp 3 số. Tổng 3 số bất kì đều âm nên cả 10 cặp tức 30 số còn lại đều âm. Cộng với số âm bỏ riêng ra sẽ có tổng 31 số đều là âm.

Đọc tiếp...
OoO_Nhok_Lạnh_Lùng_OoO 27/06/2017 lúc 08:24
Báo cáo sai phạm

Trong 31 số trên phải có ít nhất 1 số âm không thì tổng 3 số bất kì đều là số dương trái với đề bài. Bỏ riêng số âm vùa nói trên ra. ta còn lại 30 số chia làm 10 cặp mỗi cặp 3 số. Tổng 3 số bất kì đều âm nên cả 10 cặp tức 30 số còn lại đều âm. Cộng với số âm bỏ riêng ra sẽ có tổng 31 số đều là âm

Đọc tiếp...
Nguyen ngoc dat 25/09/2016 lúc 19:08
Báo cáo sai phạm

cho 31 số hữu tỉ sao cho bất kì 3 số nào trong chúng cũng có tổng là một số âm . chứng minh rằng tổng của 31 số đó là 1 số âm

Trong 31 số trên phải có ít nhất 1 số âm không thì tổng 3 số bất kì đều là số dương trái với đề bài. Bỏ riêng số âm vùa nói trên ra. ta còn lại 30 số chia làm 10 cặp mỗi cặp 3 số. Tổng 3 số bất kì đều âm nên cả 10 cặp tức 30 số còn lại đều âm. Cộng với số âm bỏ riêng ra sẽ có tổng 31 số đều là âm.

Đọc tiếp...
Trần Thị Loan Quản lý 28/05/2015 lúc 10:58
Báo cáo sai phạm

a) Tổng của 4 số là 1 số dương nên chắc chắn trong 4 số đó có 1 số dương

Bớt số dương đó ra => còn lại 12 số . Chia 12 số đó thành 3 nhóm, mỗi nhóm có 4 chữ số

=> Giá trị mỗi nhóm là số dương => Tổng 12 số đó dương

Cộng với số dương đã bớt ra => tổng của 13 số đã cho dương

Đọc tiếp...
Đinh Tuấn Việt Hiệp sĩ 28/05/2015 lúc 10:29
Báo cáo sai phạm

Nhìn vào cái này thì thấy cái khác quay, hoa mắt quá !!!

Đọc tiếp...
Trần Thị Loan Quản lý 28/05/2015 lúc 11:44
Báo cáo sai phạm

b)  Tích của 3 số bất kì cũng là một số âm => chắc chắn có ít nhất 1 số âm 

=> Bớt số âm đó ra còn lại 12 số. Chia 12 số đó thành 4 nhóm, mỗi nhóm có 3 số 

Giá trị mỗi nhóm âm => trong đó chắc chắn có 1 số âm và tích của 12 số bất kì là số dương

Có 4 nhóm =>  có 4 số âm nữa => Vậy Có 5 số âm

Còn lại 8 số : Chia thành 2 nhóm (mỗi nhóm 3 số) và 2 số còn lại

Mỗi nhóm ta bớt ra được 1 số âm => ta được 2 số âm nũa

Còn lại 6 số: Chia thành 2 nhóm => ta được 2 số âm nữa

Còn lại 4 số : chia thành một nhóm 3 số và 1 số  mà Tích của 4 số dương , tích của 3 số âm

=> Số còn lại âm. vậy ta bớt được 2 số âm từ 4 số còn lại

=> Còn lại 2 số có tích dương. Có 11 số âm lấy ra từ 13 số => tích của 11 số là âm

Mà tích của 12 bất kì dương => 2 số còn lại phải âm

=> ĐPCM

Đọc tiếp...
Kẻ Bí Mật 18/05/2015 lúc 07:46
Báo cáo sai phạm

Trong 31 số đã cho có ít nhất 1 số là số dương (vì nếu 31 số đã cho đều âm thì tổng của 5 số bất kỳ không thể là 1 số dương)

Tách riêng số dương đó ra còn 30 số, nhóm 5 số vào 1 nhóm thì được 6 nhóm. Trong đó nhóm nào cũng là 1 số dương.

=> Tổng của 30 số là 1 số dương cộng thêm 1 số dương đã tách.

Vậy tổng của 31 số đó là 1 số dương

Đọc tiếp...
Hoàng Thị An 09/12/2016 lúc 19:25
Báo cáo sai phạm

Trong các số đã cho ít nhất 1 số dương vì nếu trái lại tất cả đều là số âm thì tổng của 5 số bất kì sẽ là âm

Tách riêng số đó còn 30 số chia làm 6 nhóm . Theo đề bài tổng của các số mỗi nhóm đều là số dương nên tổng của 6 nhóm đều là dương nên tổng của ................

Đọc tiếp...
Kaneki Ken 03/04/2017 lúc 19:34
Báo cáo sai phạm
Miku 22/04/2018 lúc 14:50
Báo cáo sai phạm

Giả sử 10n, 10m là hai số có cùng số dư khi chia cho 19 (1 ≤ n < m ≤ 20).

  • 10m – 10n ⋮ 19
  • 10n.(10m-n – 1) ⋮ 19, mà 10n không chia hết cho 19 nên suy ra:

10m-n – 1 ⋮ 19

  • 10m-n – 1 = 19k (k ∈ N)
  • 10m-n = 19k + 1 (đpcm).
Đọc tiếp...
Love Phương Forever 22/04/2018 lúc 14:52
Báo cáo sai phạm

miku lmđúng òi đó

Đọc tiếp...
Bảo Bình 07/08/2016 lúc 06:37
Báo cáo sai phạm

Giả sử trong 2016 số hạng không có số nào bằng nhau.Không mất tính tổng quát ta giả sử:

\(a_1< a_2< a_3< ...........< a_{2016}\)

Vì \(a_1,a_2,......,a_{2016}\) đều là số nguyên dương nên ta suy ra:

\(a_1\ge1,a_2\ge2,.........,a_{2016}\ge2016\)

Suy ra:\(\frac{1}{a_1}+\frac{1}{a_2}+.........+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+.....+\left(\frac{1}{1024}+...+\frac{1}{2016}\right)\)

\(< 1+\frac{1}{2}.2+\frac{1}{2^2}.2^2+.........+\frac{1}{2^{10}}.2^{10}=11< 12\)

Do đó điều giả sử là sai

Vậy trong 2016 số đã cho có ít nhất hai số bằng nhau

Đọc tiếp...
Trunks 07/08/2016 lúc 20:32
Báo cáo sai phạm

éo bik 

Đọc tiếp...
Hồ Thị Hoài An 07/08/2016 lúc 20:59
Báo cáo sai phạm

Ko biết thì bạn đừng nói nhé =)) Spam quá à

Đọc tiếp...
Đinh Tuấn Việt 28/06/2015 lúc 22:23
Báo cáo sai phạm

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câu

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: