Giúp tôi giải toán


ngonhuminh 13/01/2017 lúc 12:16

Nhanh vậy ta:

chơi khác kiểu không trùng ai hết.

câu 1

\(P=\frac{1}{x^2}+\frac{1}{y^2}=\frac{y^2+x^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\)(1)

Ta lại có: 

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{20}{2}=10\)(2) Đẳng thức khi x=y

Từ (1) và (2) \(\Rightarrow P_{min}=\frac{20}{100}=\frac{1}{5}\) Khi x=y=\(\sqrt{10}\)

câu 2: Không cần đk (x+y+z)=1

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) (1) =>Dk \(\hept{\begin{cases}x+z\ne0\\y+z\ne0\\x+y\ne0\end{cases}\Rightarrow\left(x+y+z\right)\ne0}\)

Nhân hai vế (1) với (x+y+z khác 0)

\(\Leftrightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=1.\left(x+y+z\right)\)

\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)

\(\Rightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=0\)

alibaba nguyễn 13/01/2017 lúc 11:44

Câu 1: 

Ta có:

\(\frac{1}{x^2}+\frac{x^2}{100}\ge\frac{2}{10}\left(1\right)\)

\(\frac{1}{y^2}+\frac{y^2}{100}\ge\frac{2}{10}\left(2\right)\)

Lấy (1) + (2) vế theo vế ta được

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{x^2+y^2}{100}\ge\frac{2}{10}+\frac{2}{10}\)

\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{10}-\frac{x^2+y^2}{100}=\frac{4}{10}-\frac{20}{100}=\frac{1}{5}\)

Dấu = xaey ra khi \(x^2=y^2=10\)hay \(x=y=\sqrt{10}\)

Bài 2/ Ta có:

\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\left(2\right)\end{cases}}\)

Lấy (1) . (2) vế theo vế ta được

\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)

\(=\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=1\)

\(=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\left(x+y+z\right)=1\)

\(=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+1=1\)

\(=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

Thắng Nguyễn CTV 13/01/2017 lúc 11:21

Câu 1:

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:

\(P=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=20\\x=y\end{cases}}\Rightarrow x=y=\sqrt{10}\)

Vậy MinP=\(\frac{1}{5}\Leftrightarrow x=y=\sqrt{10}\)

Câu 2:

Từ \(x+y+z=1\Rightarrow\hept{\begin{cases}x=1-\left(y+z\right)\\y=1-\left(x+z\right)\\z=1-\left(x+y\right)\end{cases}}\).Thay vào ta có

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)

\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)

\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)

\(=\frac{x}{y+z}-x+\frac{y}{x+z}-y+\frac{z}{x+y}-z\)

\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)=1-1=0\)

ngonhuminh 08/01/2017 lúc 00:51

\(dk:-\sqrt{2}\le x\le\sqrt{2}\)(*)

\(\left(A-3x\right)=\sqrt{2-x^2}\)

\(\Leftrightarrow a^2-6ax+9x^2=2-x^2\)

\(10x^2-6ax+a^2-2=0\)(**)

Giá trị (a)  (**) có nghiệm thỏa mãn (*)  

(**)\(\Leftrightarrow\left(x^2-2.\frac{3a}{10}x+\frac{9a^2}{100}\right)=\frac{20-a^2}{100}\)\(\Leftrightarrow\left(x-\frac{3a}{10}\right)^2=\frac{20-a^2}{100}\Rightarrow20-a^2\ge0\Rightarrow!a!\le2\sqrt{5}\)

\(a=2\sqrt{5}\Rightarrow x=\frac{6\sqrt{5}}{10}=\frac{3\sqrt{5}}{5}< \sqrt{2}\)(nhạn)

Kết luận: GTLN của A là \(A_{max}=2\sqrt{5}\) tại  \(x=\frac{3\sqrt{5}}{5}\)

alibaba nguyễn 08/01/2017 lúc 08:36

\(A=3x+\sqrt{2-x^2}\)

\(\Leftrightarrow\frac{\sqrt{10}A}{2}=\frac{3\sqrt{10}x}{2}+\frac{\sqrt{10}\sqrt{2-x^2}}{2}\)

\(\le\sqrt{\left(\frac{45}{2}+\frac{5}{2}\right)\left(x^2+2-x^2\right)}=\sqrt{25.2}=5\sqrt{2}\)

\(\Rightarrow1A\le\frac{5\sqrt{2}.2}{\sqrt{10}}=2\sqrt{5}\)

Vậy GTLN là A = \(2\sqrt{5}\)khi x = \(\frac{3}{\sqrt{5}}\)  

Long 15/01/2017 lúc 21:32

NguNhuMinh oi

Hoàng Phúc CTV 05/01/2017 lúc 15:36

áp dụng bđt bunhiacopxki 

(a^2+b^2)(1^2+1^2) >= (a.1+b.1)^2 = (a+b)^2=4

=>a^2+b^2 >= 4/2=2 

dấu "=" xảy ra <=> a=b,mà a+b=2=>a=b=1

Vậy minD=2 khi a=b=1

alibaba nguyễn 02/01/2017 lúc 11:46

2x2 + 2y2 + 2xy - 6y + 21

= (x2 + 2xy + y2) - 2(x + y) + 1 + (x2 + 2x + 1) + (y2 - 4y + 4) + 15

= (x + y)2 - 2(x + y) + 1 + (x + 1)2 + (y - 2)2 + 15

= (x + y - 1)2 + (x + 1)2 + (y - 2)2 + 15 \(\ge15\)

Vậy GTNN là 15 đạt được khi x = - 1, y = 2

Nguyễn Thùy Trang 02/01/2017 lúc 11:01

Bạn chép thiếu đề à??

Kurosaki Akatsu 01/01/2017 lúc 14:47

Ta có :

\(\left(x-1\right)^2\ge0\)

\(\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left|2y+2\right|-3\ge-3\)

\(\Rightarrow Min_E=-3\)

ngonhuminh 01/01/2017 lúc 14:47

Nhất nhỏ =-3 khi x=1 và y=-1

alibaba nguyễn 30/12/2016 lúc 22:44

\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)

\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

đỗ mạnh hùng 13/01/2017 lúc 05:30

tao ko biet

Nguyễn Quang Tùng 26/12/2016 lúc 14:43

giá trị nhỏ nhất là 0

vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0

dấu bằng xảy ra khi

x - 2013 = 0

x-2014=0

x-2015=0

vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức

vũ đức phúc 01/01/2017 lúc 22:24

vÌ /X-2013/ lớn hơn hoặc bằng 0

   /x-2014/ .............................

   /x-2015/...............................

-> /x-2013/ + /x-2014/ + /x-2015/ lớn hơn hoặc băng 0

Dấu bằng xẩy ra khi x -2013 = 0
 -> x = ..........

                               x - 2014 = 0

-> x = ..............

                                 x - 2015 = 0

-> x =...........


 

Nguyen Thi Tram Oanh 01/01/2017 lúc 19:29

GTNN của biểu thức là 2 khi và chỉ khi x=2014

Trà My CTV 24/12/2016 lúc 22:20

\(A=\left|2x+2\right|+\left|2x-2013\right|\)

TH1: \(x< -1\)

\(A=\left|2x+2\right|+\left|2x-2013\right|=-2x-2-2x+2013=-4x+2011>2015\)

TH2: \(-1\le x\le\frac{2013}{2}\)

\(A=\left|2x+2\right|+\left|2x-2013\right|=-2x-2+2x-2013=2011\)

TH3: \(x>\frac{2013}{2}\)

\(A=\left|2x+2\right|+\left|2x-2013\right|=2x+2+2x-2013=4x-2011>2015\)

Kết hợp cả 3 trường hợp ta thấy \(A_{min}=2011\) khi \(-1\le x\le\frac{2013}{2}\)

Vậy .....................

Thanh Thảo Nhi Nguyễn 24/12/2016 lúc 22:22

ta có: | 2x+2 | > hoặc = 0, |2x-2013| >hoặc 0

=> GTNN là |2x+2|=0 và |2x-2013|=0  

=> A=0+0=0 Khi đó :

  • 2x+2=0

<=> 2x=-2

<=> x=-1

  • 2x-2013=0

<=> 2x=2013

<=> x=2013 : 2 = 1006,5

alibaba nguyễn 15/12/2016 lúc 10:12

Ta có

\(A=2x+\sqrt{4-2x^2}=\sqrt{\left(\sqrt{2}.\sqrt{2}x+1.\sqrt{4-2x^2}\right)^2}\)

\(\le\sqrt{\left(2+1\right)\left(2x^2+4-2x^2\right)}=\sqrt{3.4}=2\sqrt{3}\)

Vậy GTLN là \(2\sqrt{3}\)đạt được khi \(\frac{2}{\sqrt{3}}\)

phan le phuong thao 15/12/2016 lúc 04:45

mk ko bit

park shin hye 11/01/2017 lúc 20:29

Ta có : \(\frac{x^2+2x-9}{x-3}\)=\(\frac{x^2-9+2x}{x-3}\)=\(\frac{\left(x-3\right)\cdot\left(x+3\right)}{x-3}+\frac{2x+6-6}{x-3}\)=\(\left(x+3\right)+\frac{2x-6}{x-3}+\frac{6}{x-3}\)=\(\left(x-3\right)+6+\frac{2\cdot\left(x-3\right)}{x-3}+\frac{6}{x-3}=\left(x-3\right)+\frac{6}{x-3}+6+2=\left(x-3\right)+\frac{6}{x-3}+8\)                   Với x>0 áp dụng bất đẳng thức CÔ-SI ta có:(\(\left(x-3\right)+\frac{6}{x-3}>=2\sqrt{\left(x-3\right)\cdot\frac{6}{x-3}}=2\sqrt{6}\)==> M \(>=2\sqrt{6}+8\)  Vậy MIN M là \(2\sqrt{6}+8\)<==> \(\left(x-3\right)\cdot\left(x-3\right)=6\)<==>\(\left(x-3\right)=\sqrt{6}\)<==>\(x=\sqrt{6}+3\)

Trương Đức Tài 24/12/2016 lúc 12:13

vì M>3suy ra gtnn của M=4

kunkuncun 05/12/2016 lúc 20:20

Tìm min của B= /2x+1/ + /2x-5/

P/s mk đnag cần gấp

Hoàng Lê Bảo Ngọc CTV 05/12/2016 lúc 17:52

3/ \(D=\left(x-2\right)\left(x-3\right)=x^2-5x+6=\left(x-\frac{5}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

min D = -1/4 khi x = 5/2

Hoàng Lê Bảo Ngọc CTV 05/12/2016 lúc 17:52

2/ \(C=\frac{x^2-6x+6}{x^2-2x+1}=\frac{x^2-6x+6}{\left(x-1\right)^2}\)

Tới đây bạn làm tương tự 1/

alibaba nguyễn 28/11/2016 lúc 16:31

Ta có

\(\frac{x^3}{\left(y+z\right)\left(y+2z\right)}+\frac{y+z}{12}+\frac{y+2z}{18}\ge\frac{3x}{6}=\frac{x}{2}\)

\(\Leftrightarrow\frac{x^3}{\left(y+z\right)\left(y+2z\right)}\ge-\frac{y+z}{12}-\frac{y+2z}{18}+\frac{x}{2}=\frac{18x-7z-5y}{36}\)

Tương tự ta có

\(\frac{y^3}{\left(z+x\right)\left(z+2x\right)}\ge\frac{18y-7x-5z}{36}\)

\(\frac{z^3}{\left(x+y\right)\left(x+2y\right)}\ge\frac{18z-7y-5x}{36}\)

Cộng vế theo vế ta được

\(A\ge\frac{18x-7z-5y}{36}+\frac{18y-7x-5z}{36}+\frac{18z-7y-5x}{36}\)

\(=\frac{x+y+z}{6}\ge\frac{3\sqrt[3]{xyz}}{6}=\frac{3.2}{6}=1\)

Dấu = xảy ra khi x = y = z = 2

Hoàng Lê Bảo Ngọc CTV 29/11/2016 lúc 12:10

alibaba nguyễn Đúng rồi! Muốn k cho bạn lắm nhưng không hiểu sao cái nút "ĐÚNG" nó đơ mất rồi :(

Nguyễn Công Khôi 28/11/2016 lúc 21:11

=720vix+y3=56vayx=720

Hoàng Lê Bảo Ngọc CTV 15/11/2016 lúc 19:33

Đặt \(A=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+x+1}{\left(x+1\right)^2}\)

Đặt \(t=x+1\Rightarrow x=t-1\) thay vào A được : 

\(\frac{\left(t-1\right)^2+\left(t-1\right)+1}{t^2}=\frac{t^2-t+1}{t^2}=\frac{1}{t^2}-\frac{1}{t}+1\)

Lại đặt \(y=\frac{1}{t}\) thì ta có \(A=y^2-y+1=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra khi y = 1/2 <=> t = 2 <=> x = 1

Vậy min A = 3/4 khi x = 1

Quang 13/11/2016 lúc 00:47

Từ giả thiết x2 + y2  = 1, suy ra x2 \(\le\)1 => -1 \(\le x\le\)1 (1)

Ta có P(x,y) = x2 + y2 - 4x = 1 - 4x (2)

Từ (1), (2) suy ra \(-3=1-4\cdot1\le P\le1-4\cdot\left(-1\right)=5\)

Vậy Max P = 5, Min P = -3.

Hoàng Lê Bảo Ngọc CTV 13/11/2016 lúc 01:00

Quang Cảm ơn bạn ! 
Có ai có cách giải khác không nhỉ?

Hoàng Thị Thu Huyền Quản lý 10/11/2016 lúc 14:11

Bài này cô cũng nghĩ là dùng phương pháp toa độ, chuyển qua hình học giải tích Oxy để giải.

Cô làm như sau:

Từ biểu thức P ta nghĩ đến công thức tính khoảng cách giữa hai điểm. Từ đó ta đặt \(A\left(-1;1\right);B\left(1;-1\right);C\left(-2;-2\right)\) và \(D\left(x;y\right)\). Khi đó ta thấy ngay \(P\left(x;y\right)=DA+DB+DC\)

Ta vẽ các điểm trên trục tọa độ:

?o?n th?ng f: ?o?n th?ng [A, C] ?o?n th?ng g: ?o?n th?ng [A, B] ?o?n th?ng h: ?o?n th?ng [C, B] ?o?n th?ng i: ?o?n th?ng [C, O] ?o?n th?ng j: ?o?n th?ng [A, D] ?o?n th?ng k: ?o?n th?ng [D, B] A = (-1, 1) A = (-1, 1) A = (-1, 1) B = (1.06, -1.14) B = (1.06, -1.14) B = (1.06, -1.14) C = (-2, -2) C = (-2, -2) C = (-2, -2) ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m O: Giao ?i?m c?a g, TrucHoanh ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i ?i?m D: ?i?m tr�n i

Vậy điểm D cần tìm là điểm tạo với các cạnh tam giác góc 120o. (Để hiểu rõ thêm e có thể đọc về điểm Toricenli của tam giác ABC). Do tam giác ABC cân tại C nên D thuộc CO, nói cách khác xD = yD.

Do \(\widehat{ADB}=120^o\Rightarrow\widehat{ADO}=60^o.\) Vậy thì \(tan60^o=\sqrt{3}=\frac{OA}{DO}\)

Do \(OA=\sqrt{2}\Rightarrow DO=\frac{\sqrt{2}}{\sqrt{3}}=\sqrt{\frac{2}{3}}\)

Vậy \(\sqrt{x_D^2+y_D^2}=\sqrt{2y_D^2}=\sqrt{\frac{2}{3}}\Rightarrow\left|x_D\right|=\left|y_D\right|=\frac{1}{\sqrt{3}}\). Từ hình vẽ ta có:  \(x_D=y_D=-\frac{1}{\sqrt{3}}.\)

Vậy \(P\left(x;y\right)=DA+DB+DC=\sqrt{\left(-\frac{1}{\sqrt{3}}+1\right)^2+\left(-\frac{1}{\sqrt{3}}-1\right)^2}\)

\(+\sqrt{\left(-\frac{1}{\sqrt{3}}-1\right)^2+\left(-\frac{1}{\sqrt{3}}+1\right)^2}+\sqrt{\left(-\frac{1}{\sqrt{3}}+2\right)^2+\left(-\frac{1}{\sqrt{3}}+2\right)^2}\)

\(=\sqrt{6}+2\sqrt{2}.\)

Vậy min P(x;y) = \(\sqrt{6}+2\sqrt{2}\) khi \(x=y=-\frac{1}{\sqrt{3}}.\)

Vongola Famiglia 08/11/2016 lúc 22:59

Sử dụng HÌNH HỌC GIẢI TÍCH OXY 

Kudo Shinicni 10/11/2016 lúc 11:24

su dung cach tinghing hoc giai h OXY

zoombie hahaha 27/10/2016 lúc 12:25

1.

Áp dụng hệ quả cô si:

\(\left(a^2+b^2+c^2\right)^{1000}\le3^{999}\left(a^{2000}+b^{2000}+c^{2000}\right)=3^{1000}\)

=>\(a^2+b^2+c^2\le3\)Dấu = khi a=b=c=1

không biết đúng hay sai đâu

Ý_Kiến_Gì 26/10/2016 lúc 20:53

khói quá

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngTứ giácHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: