Giúp tôi giải toán và làm văn


Bùi Tiến Mạnh 3 tháng 8 2016 lúc 15:34
Báo cáo sai phạm

   Ta có: A:B:C =2:3:4

    =>  \(\frac{A}{2}\)=\(\frac{B}{3}\)\(\frac{C}{4}\)

   Ta có: \(\frac{A}{2}\)+\(\frac{B}{3}\)+\(\frac{C}{4}\)=\(\frac{180}{9}\)=\(20\)

      => \(\frac{A}{2}\)= 20 -> A=20.2=40 độ

      => \(\frac{B}{3}\)= 20 -> B=20.3=60 độ

      => \(\frac{C}{4}\)= 20 -> C=20.4=80 độ

    Vậy: góc A=40 độ

            Góc B=60 độ

            Góc C=80 độ  

Đọc tiếp...
Bùi Tiến Mạnh 4 tháng 8 2016 lúc 10:03
Báo cáo sai phạm

tích đi mà

Đọc tiếp...
nhất sông núi 13 tháng 6 2017 lúc 15:35
Báo cáo sai phạm

I/ Kiến thức cần nhớ

- Công thức tính diện tích tam giác:   S = a x h : 2

Trong đó:  S là diện tích tam giác,

           a là số đo của đáy (lấy đáy là một trong 3 canh của tam giác)

           h là số đo chiều cao ứng với đáy (Chiều cao của tam giác là đoạn thẳng hạ từ đỉnh xuống đáy và vuông góc với đáy)

- Công thức liên quan:   h = S x 2 : a  ;            a = S x 2 : h

II/ Các ví dụ

Ví dụ 1:

Cho tam giác ABC (như hình vẽ) có độ dài đáy BC = 16, diện tích tam giác là 200 cm2. Vẽ chiều cao AH và tính AH.

ABCH
                                                                                                        
Giải: 

+)  Đáy là BC thì chiều cao là đoạn thẳng xuất phát từ A và vuông góc với BC.

+) Áp dụng công thức tính chiều cao h = S x 2 : a.

Độ dài chiều cao AH là:        200 x 2 : 16 = 25 (cm)

Đáp số: 25 cm

Nhận xét :

       - Không phải lúc nào chiều cao cũng nằm trong tam giác.

       - Khi tính diện tích tam giác, cần lưu ý: Chiều cao nào thì phải ứng với đáy đó.(Trong ví dụ 1, đáy là BC thì chiều cao là AH).

-----------------------

Ví dụ 2:

Cho tam giác ABC có diện tích là 45 cm2. D là trung điểm của cạnh AB. Trên cạnh AC lấy điểm E sao cho AE gấp đôi EC. Tính diện tích tam giác AED.

Giải:

ABCHDE

Nối B với E. Vẽ EH vuông góc với AB.

Ta có

      SABE = 12  x EH x AB 

      SADE  =  12  x EH x AD

                = 12 x EH x 12 x AB  (vì AD = 12   x AB)

                =  12  x SABE                           (1)

Tương tự, ta có: ABE và ABC là hai tam giác có chung chiều cao hạ từ đỉnh B mà đáy AE = 23  x AC

Suy ra: SABE = 23  x SABC                       (2)  .

Từ (1) và (2) ta có  SADE  = 12  x  23  x SABC =  13  x 45 = 15 (cm2)

Đáp số : 15 cm2

Nhận xét:  

- Ta có thể tính diện tích tam giác bằng cách tìm mối quan hệ giữa các tam giác.

    + Nếu hai tam giác có chung chiều cao (hoặc chiều cao bằng nhau) thì diện tích của chúng tỉ lệ với hai cạnh đáy .

    + Nếu hai tam giác có chung đáy (hoặc đáy bằng nhau)  thì diện tích của chúng tỉ lệ với hai đường cao tương ứng.

- Lưu ý: Ưu tiên nối thêm hình và chọn đáy là những cạnh có chia tỉ lệ. (Ở ví dụ 2, ta cũng có thể nối D với C).

Đọc tiếp...
Hoàng Thị Thu Huyền Quản lý 5 tháng 1 2018 lúc 10:38
Báo cáo sai phạm
Trung Lê Đức 23 tháng 9 lúc 21:31
Báo cáo sai phạm

7 a 45 \-------------v----------/

Đường cao của vườn dài:  105/7x2=15x2=30 (m)

Diện tích mảnh vườn ban đầu là : (45x30)/2=675 (m2)

                               Đ/s 675 m2 

Học tốt

ta c

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: