Lỗi: Trang web OLM.VN không tải hết được tài nguyên, xem cách sửa tại đây.

Hỏi đáp Hình bình hành


Sửa lại đề : AM = NC

                     A B C D M N

Ta có : AB // CD ( tứ giác ABCD là hình bình hành )

\(\Rightarrow BM//DN\left(1\right)\)

Ta có : AB = AM + MB

             DC = DN + NC

mà AB = DC ( tứ giác ABCD là hình bình hành ) ; AM = NC (gt)

\(\Rightarrow MB=DN\left(2\right)\)

\(\Rightarrow\)Tứ giác BMDN là hình bình hành (đpcm)

 

Đọc tiếp...

A B C D H N M

a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC 

=> MN là đtb của tg DHC (đn)

=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN

     MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB

=> ABMN là hình bình hành (dấu hiệu)

b, MN // DC (câu a) DC _|_ AD (gt)

=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM 

=> N là trực tâm của tg DAM

=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)

=> DM _|_ BM (TC)

=> ^BMD = 90

c, có CD thì tính đc AB xong tính bth

Đọc tiếp...

a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành

b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)

Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)

Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)

c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)

Đọc tiếp...

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành

Đọc tiếp...

A B C D E F I K M

a, Vì ABCD là hình bình hành nên AD = BC

mà AD = AF ( vì tam giác ADF đều )

=> BC = AF 

Xét tam giác BCE và tam giác AFE có :

             BC = AF ( theo chứng minh trên )

             BE = AE ( vì tam giác ABE đều )

             góc EBC = 60độ + góc ABC = 60độ + ( 180độ - gócBAD ) = 360độ - góc BAD - ( góc FAD + góc BAE ) = EAF

Do đó : tam giác BCE = tam giác AFE ( c.g.c )

=> CE = FE ( hai cạnh tương ứng ) ( 1 )

  Tương tự ta xét tam giác AFE và tam giác DFC ( c.g.c )

=> FE = FC ( hai cạnh tương ứng ) ( 2 )

Từ ( 1 ) và ( 2 ) suy ra : FE = CE = FD 

=> tam giác EFC đều .

Mk mới học sơ sơ về hình bình hành , chỗ mk mới học đến bài hình thang cân nên mk chỉ lm đc đến đây thui nhé .

Học tốt

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: