Sửa lại đề : AM = NC
Ta có : AB // CD ( tứ giác ABCD là hình bình hành )
\(\Rightarrow BM//DN\left(1\right)\)
Ta có : AB = AM + MB
DC = DN + NC
mà AB = DC ( tứ giác ABCD là hình bình hành ) ; AM = NC (gt)
\(\Rightarrow MB=DN\left(2\right)\)
\(\Rightarrow\)Tứ giác BMDN là hình bình hành (đpcm)
Cho hình thang vuông ABCD , có góc A = góc D = 90 độ , AB = 1/2 CD . Gọi H là hình chiếu của D trên AC . Gọi M và N lần lượt là trung điểm HC và HD .
a) Chứng minh ABMN là hình bình hành
b) Chứng minh góc BMD = 90 độ
c) Cho CD = 16 cm , AD = 6 cm . Tính diện tích ABCD
Đọc tiếp...Được cập nhật 20 tháng 10 2020 lúc 15:58
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
Cho hình thang vuông ABCD , có góc A = góc D = 90 độ , AB = 1/2 CD . Gọi H là hình chiếu của D trên AC . Gọi M và N lần lượt là trung điểm HC và HD .
a) Chứng minh ABMN là hình bình hành
b) Chứng minh góc BMD = 90 độ
c) Cho CD = 16 cm , AD = 6 cm . Tính diện tích ABCD
Đọc tiếp...Được cập nhật 20 tháng 10 2020 lúc 14:30
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
a) ABCD là hình bình hành => AD=BC, AD//BC
--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)
Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.
b) AHDK không thể là hình bình hành nha --> phải là AHCK
Chứng minh: AH//CK (cùng vuông góc BD)
CH//AK (vì ABCD là hình bình hành)
=> AHCK là hình bình hành
a, Vì ABCD là hình bình hành nên AD = BC
mà AD = AF ( vì tam giác ADF đều )
=> BC = AF
Xét tam giác BCE và tam giác AFE có :
BC = AF ( theo chứng minh trên )
BE = AE ( vì tam giác ABE đều )
góc EBC = 60độ + góc ABC = 60độ + ( 180độ - gócBAD ) = 360độ - góc BAD - ( góc FAD + góc BAE ) = EAF
Do đó : tam giác BCE = tam giác AFE ( c.g.c )
=> CE = FE ( hai cạnh tương ứng ) ( 1 )
Tương tự ta xét tam giác AFE và tam giác DFC ( c.g.c )
=> FE = FC ( hai cạnh tương ứng ) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : FE = CE = FD
=> tam giác EFC đều .
Mk mới học sơ sơ về hình bình hành , chỗ mk mới học đến bài hình thang cân nên mk chỉ lm đc đến đây thui nhé .
Học tốt
...
Dưới đây là những câu có bài toán hay do Online Math lựa chọn.
....