Giúp tôi giải toán và làm văn


Linh Chi - Dream 3 tháng 3 lúc 15:05
Báo cáo sai phạm

Mở bài:

Giới thiệu nhân vật: Thạch Sanh trong truyện cổ “Thạch Sanh”; Là một dũng sĩ tài ba và đức độ.

Thân bài:

Tả hình ảnh của dũng sĩ Thạch Sanh

– Ngoại hình:

+ Cao lớn, khoẻ mạnh, đầu chít khăn, quanh năm ở trần, đóng khố.

+ Có sức khoẻ hơn người. Gánh củi của Thạch Sanh lớn gấp mấy lần gánh củi của người khác.

– Tính cách:

+ Chăm chỉ siêng năng.

+ Thật thà, chất phác, cả tin.

+ Thích làm việc nghĩa.

+ Độ lượng, thương người.

– Tài năng:

+ Võ nghệ cao cường.

+ Phép thuật tinh thông.

+ Chiến thắng được chằn tinh và đại bàng.

Kết bài:

Cảm nghĩ của em đối với nhân vật Thạch Sanh: Yêu mến và khâm phục chàng dũng sĩ tài đức vẹn toàn; Thạch Sanh là hình tượng tiêu biểu cho vẻ đẹp lí tưởng mà người xưa mơ ước.

Đọc tiếp...
꧁༺тнιêиঔтнầиঔđєиঔтєαмঔɢк༻꧂ 3 tháng 3 lúc 14:53
Báo cáo sai phạm

ak thôi, cho mik xl bn vì đã lm phiền bn nha !

Đọc tiếp...
╰❥결 원ッ2K҉7⁀ᶦᵈᵒᶫ♚ CTV 5 tháng 2 lúc 16:54
Báo cáo sai phạm

\(ĐKXĐ:-1\le x\le1\)

\(pt\Leftrightarrow2\left[\sqrt{1-x}-\left(1-x\right)\right]+\left[\sqrt{1-x^2}-\left(1+x\right)\right]=0\)

\(\Leftrightarrow2\sqrt{1-x}\left(1-\sqrt{1-x}\right)+\sqrt{1+x}\)

\(\left(\sqrt{1-x}-\sqrt{1+x}\right)=0\)

\(\Leftrightarrow2\sqrt{1-x}.\frac{x}{1+\sqrt{1-x}}+\sqrt{1+x}.\frac{-2x}{\sqrt{1-x}+\sqrt{1+x}}=0\)

\(\Leftrightarrow x\left(\frac{\sqrt{1-x}}{1+\sqrt{1-x}}-\frac{\sqrt{1+x}}{\sqrt{1-x}+\sqrt{1+x}}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\\frac{\sqrt{1-x}}{1+\sqrt{1-x}}=\frac{\sqrt{1+x}}{\sqrt{1-x}+\sqrt{1+x}}\left(^∗\right)\end{cases}}\)

\(\left(^∗\right)\Leftrightarrow1-x=\sqrt{1+x}\)

\(\Leftrightarrow1+x^2-2x=1+x\Leftrightarrow x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(tmđk\right)\\x=3\left(ktmđk\right)\end{cases}}\)

Vậy phương trình có 1 nghiệm duy nhất là 0

Đọc tiếp...
tth_new CTV 6 tháng 2 lúc 13:18
Báo cáo sai phạm

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1+x}=a\ge0;\sqrt{1-x}=b\ge0\)

Ta thu được hệ: \(\hept{\begin{cases}2b+ab=b^2+2\\a^2+b^2=2\end{cases}}\)

Cộng hai phương trình của hệ lại với nhau, vế với vế: \(a^2+b^2+2b+ab=b^2+4\)

\(\Leftrightarrow\left(a+2\right)\left(a+b-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(L\right)\\a=2-b\left(1\right)\end{cases}}\)

(1) \(\Leftrightarrow a+b=2\Leftrightarrow\sqrt{1+x}+\sqrt{1-x}=2\)

\(\Leftrightarrow2+2\sqrt{\left(1+x\right)\left(1-x\right)}=4\Leftrightarrow\left(1+x\right)\left(1-x\right)=1\) (chuyển vế, chia hai vế cho 2)

\(\Leftrightarrow-x^2=0\Rightarrow x=0\)

Đọc tiếp...
tth_new CTV 6 tháng 2 lúc 13:19
Báo cáo sai phạm

Chỗ dòng kế cuối: Sau khi chuyển vế chia hai vế cho 2 sẽ được: \(\sqrt{\left(1+x\right)\left(1-x\right)}=1\Leftrightarrow\left(1+x\right)\left(1-x\right)=1\)

... nha! Em làm thiếu một bước.

Đọc tiếp...
╰❥결 원ッ2K҉7⁀ᶦᵈᵒᶫ♚ CTV 31 tháng 1 lúc 19:34
Báo cáo sai phạm

Ta có: \(\sqrt{x^2+y^2+4x-2y+5}+\sqrt{x^2+y^2-8x-14y+65}=6\sqrt{2}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2+\left(y-1\right)^2}+\sqrt{\left(4-x\right)^2+\left(7-y\right)^2}=6\sqrt{2}\left(^∗\right)\)

Xét hai vectơ \(\overrightarrow{u}=\left(x+2;y-1\right)\)và \(\overrightarrow{v}=\left(4-x;7-y\right)\)

Ta có: \(\overrightarrow{u}+\overrightarrow{v}=\left(6;6\right)\Rightarrow\left|\overrightarrow{u}+\overrightarrow{v}\right|=\sqrt{6^2+6^2}=6\sqrt{2}\)

Do vậy \(\left(^∗\right)\)trở thành\(\overrightarrow{u}+\overrightarrow{v}=\left|\overrightarrow{u}+\overrightarrow{v}\right|\)

Điều này xảy ra khi và chỉ khi \(\overrightarrow{u}\)và \(\overrightarrow{v}\)cùng hướng

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)\left(7-y\right)=\left(y-1\right)\left(4-x\right)\\\left(x+2\right)\left(4-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x+3\\-2\le x\le4\end{cases}}\)

Khi y = x + 3 thì \(x^2+y^2-2x+2y+2=2x^2+6x+17\)

Xét hàm số \(f\left(x\right)=2x^2+6x+17\)trên đoạn \(\left[-2;4\right]\)

Ta có: \(-\frac{6}{2.2}=\frac{-3}{2}\in\left[-2;4\right]\)và \(f\left(-2\right)=13;f\left(-\frac{3}{2}\right)=\frac{25}{2};f\left(4\right)=73\)

Suy ra \(|^{min}_{\left[-2;4\right]}f\left(x\right)=\frac{25}{2}\);\(|^{max}_{\left[-2;4\right]}f\left(x\right)=73\)

Do đó \(m=\frac{25}{2};M=73\)và \(n+M=\frac{171}{2}\)

Vậy \(n+M=\frac{171}{2}\)

Đọc tiếp...
💮Chiyuki Fujito 🎼 31 tháng 1 lúc 19:33
Báo cáo sai phạm

Xin lỗi bạn nhé . Mình sai ở cái dòng sau chữ ta có đó bạn

Nếu muốn bạn có thể bỏ đi. Còn thích thì thay cái đó = cái này:

Với \(x\in Z\) thì \(\sqrt{x}\in Z\) hoặc\(\sqrt{x}\) là số vô tỉ

Xin lỗi bạn rất nhiều

Đọc tiếp...
💮Chiyuki Fujito 🎼 31 tháng 1 lúc 16:43
Báo cáo sai phạm

Đây là bài của lớp 7 mà

Ta có \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Vì \(x\in Z\Rightarrow\sqrt{x}\in Z\)

Để \(A\in Z\Rightarrow\frac{2}{\sqrt{x}+1}\in Z\)

\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)               

Mà  \(\sqrt{x}\ge0\) \(\forall x\)

\(\Rightarrow\sqrt{x}+1\ge1\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}+1=1\\\sqrt{x}+1=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}=1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=1;x=-1\end{cases}}\)

Vậy \(x\in\left\{0;1;-1\right\}\)

Đọc tiếp...
Thanh Tùng DZ 31 tháng 1 lúc 16:39
Báo cáo sai phạm

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

vì x nguyên để A nhận GT nguyên thì \(\frac{2}{\sqrt{x}+1}\in Z\)\(\Rightarrow2⋮\sqrt{x}+1\)\(\Rightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Mà \(\sqrt{x}+1\ge0+1=1\)nên \(\sqrt{x}+1\in\left\{1;2\right\}\Rightarrow\sqrt{x}\in\left\{0;1\right\}\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Đọc tiếp...
战哥 31 tháng 1 lúc 15:35
Báo cáo sai phạm

\(ĐKXĐ:x\ne1;x\ne0\)

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}\)

\(N=\frac{\sqrt{x}-3}{2\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}}=\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)

Ta có :

 \(x\ge0>-3\)

\(\Leftrightarrow x>-3\)

\(\Leftrightarrow x+\left(x-2\sqrt{x}\right)>-3+\left(x-2\sqrt{x}\right)\)

\(\Leftrightarrow2x-2\sqrt{x}>x-2\sqrt{x}-3\)

\(\Leftrightarrow\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}>\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)

\(\Leftrightarrow A>N\)

Đọc tiếp...
╰❥결 원ッ2K҉7⁀ᶦᵈᵒᶫ♚ CTV 30 tháng 1 lúc 21:03
Báo cáo sai phạm

\(ĐKXĐ:x\ge0\)

Ta có: \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}=\frac{x-1}{x+2\sqrt{x}+1}\)

\(\Rightarrow A^2=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}=\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}\)

\(\Rightarrow A^2+A=\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}+\frac{x-1}{x+2\sqrt{x}+1}\)

\(=\frac{2x-2\sqrt{x}}{x+2\sqrt{x}+1}=\frac{2\left(x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)^2}\)

\(A\le0\Leftrightarrow\orbr{\begin{cases}A=0\\A< 0\end{cases}}\)

+) A = 0\(\Leftrightarrow2\left(x-\sqrt{x}\right)=0\Leftrightarrow x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\left(tm\right)\)

+) A < 0 \(\Leftrightarrow2\left(x-\sqrt{x}\right)< 0\)(vì \(\left(\sqrt{x}+1\right)^2>0\forall x\ge0\)

\(\Leftrightarrow x-\sqrt{x}< 0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}\\\sqrt{x}-1\end{cases}}\)trái dấu

Mà \(\sqrt{x}>\sqrt{x}-1\Rightarrow\hept{\begin{cases}\sqrt{x}>0\\\sqrt{x}< 1\end{cases}}\Leftrightarrow0< x< 1\)

Vậy 0 < x < 1 thì \(A^2+A\le0\)

Đọc tiếp...
╰❥결 원ッ2K҉7⁀ᶦᵈᵒᶫ♚ 30 tháng 1 lúc 21:05
Báo cáo sai phạm

Sửa)): 

\(0\le x\le1\)nha. Ghi nhầm dấu ở kết luận

Do 2 th là \(\hept{\begin{cases}x=0;x=1\\0< x< 1\end{cases}}\Rightarrow\)\(0\le x\le1\)

Đọc tiếp...
战哥 31 tháng 1 lúc 21:54
Báo cáo sai phạm

Đề bài không cho x nguyên nên tớ làm như này nha :

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để \(\left|A\right|=A\)

\(\Leftrightarrow A\ge0\)

\(\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\ge0\)

\(\Leftrightarrow\frac{2}{\sqrt{x}+1}\le1\)

\(\Leftrightarrow\sqrt{x}+1\ge2\)

\(\Leftrightarrow\sqrt{x}\ge1\)

\(\Leftrightarrow x\ge1\)

Vậy để \(\left|A\right|=A\Leftrightarrow x\ge1\)

Đọc tiếp...
╰❥결 원ッ2K҉7⁀ᶦᵈᵒᶫ♚ CTV 30 tháng 1 lúc 16:57
Báo cáo sai phạm

\(ĐKXĐ:-1\le x\le2;-1\le y\le2\)

\(HPT\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\left(\sqrt{x+1}-\sqrt{y+1}\right)-\left(\sqrt{2-x}-\sqrt{2-y}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\frac{x-y}{\sqrt{x+1}-\sqrt{y+1}}+\frac{x-y}{\sqrt{2-x}+\sqrt{2-y}}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\left(x-y\right)\left(\frac{1}{\sqrt{x+1}-\sqrt{y+1}}+\frac{1}{\sqrt{2-x}+\sqrt{2-y}}\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le2;-1\le y\le2\\x=y\\\sqrt{x+1}+\sqrt{2-x}=\sqrt{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-1\le x\le2;-1\le y\le2\\x=y\\3+2\sqrt{\left(x+1\right)\left(2-x\right)}=3\left(3\right)\end{cases}}\)

Giải phương trình 3 ta được 2 nghiệm là -1 và 2

Vậy hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{2-y}=\sqrt{3}\\\sqrt{2-x}+\sqrt{y-1}=\sqrt{3}\end{cases}}\)có 2 nghiệm là (-1;-1) và (2;2)

Đọc tiếp...
Nguyễn Văn Tuấn Anh 9 tháng 12 2019 lúc 12:48
Báo cáo sai phạm

\(A=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)\left(1-\frac{1}{\sqrt{x}}\right)\)

\(=\frac{2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}.\frac{-\left(1-\sqrt{x}\right)}{\sqrt{x}}\)

\(=\frac{-2}{1+\sqrt{x}}\)

b) 

 Để \(A\in Z\)

\(\Rightarrow1+\sqrt{x}\inƯ\left(-2\right)\)

\(\Rightarrow\sqrt{x}\in\left\{0;-2;1;-3\right\}\)mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{1;0\right\}\)

\(\Rightarrow x\in\left\{0;1\right\}\)

Đọc tiếp...
tran thu phuong 31 tháng 10 2019 lúc 21:37
Báo cáo sai phạm

đặt căn 2x^2-4x+6=a
căn 3x^2-6x+4=b ta được
a+b=a^2-b^2
(a+b)(a-b-1)=0
tới đây bạn giải 2 TH là được nha
k cho mình với ạ!thank bạn

Đọc tiếp...
๖²⁴ʱČøøℓ ɮøү ²к⁷༉ CTV 20 tháng 11 2019 lúc 13:18
Báo cáo sai phạm

Dễ thấy \(\left(2x^2-4x+6\right)-\left(3x^2-6x+4\right)=-x^2+2x+2\)

nên ta đặt \(2x^2-4x+6=x\)\(3x^2-6x+4=y\)

Lúc đó: \(-x^2+2x+2=x-y\)

\(pt\Leftrightarrow\sqrt{x}-\sqrt{y}=x-y\)(1)

Vì x,y dương (do x,y nằm trong căn) nên :

\(\left(1\right)\Leftrightarrow\sqrt{x}-\sqrt{y}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}-1\right)\left(\sqrt{x}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{y}-1=0\\\sqrt{x}-\sqrt{y}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=1\left(2\right)\\x=y\end{cases}}\)

\(pt\left(2\right)\Leftrightarrow\sqrt{2x^2-4x+6}+\sqrt{3x^2-6x+4}=1\)

\(\Leftrightarrow-x^2+2x+2=1\Leftrightarrow-x^2+2x+1=0\)

\(\Leftrightarrow-\left(x-1\right)^2=2\)

Mà \(-\left(x-1\right)^2\le0\)nên pt2 vô nghiệm

Vậy ...

Đọc tiếp...
Nguyễn Công Tỉnh CTV 17 tháng 10 2019 lúc 22:15
Báo cáo sai phạm

\(P=\frac{4}{3}\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{4}{3}\)

\(\Leftrightarrow3\left(\sqrt{x}+2\right)=4\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow3\sqrt{x}+6=4\sqrt{x}+4\)

\(\Leftrightarrow6-4=4\sqrt{x}-3\sqrt{x}\)

\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)(ko thỏa mãn ĐKXĐ)

=>pt vo nghiệm

d,\(\left(\sqrt{x}+1\right)P-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\frac{\sqrt{x}+2}{\sqrt{x}+1}-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow\sqrt{x}+2-\sqrt{x}-4\sqrt{x-1}+26=-6x+10\sqrt{5x}\)

\(\Leftrightarrow-4\sqrt{x-1}+28=-6x+10\sqrt{5x}\)

\(\Leftrightarrow x=5\)

Đọc tiếp...
Nguyễn Công Tỉnh CTV 17 tháng 10 2019 lúc 22:10
Báo cáo sai phạm

\(a,x=7-4\sqrt{3}=4-2.2\sqrt{3}+3\) (Thỏa mãn ĐKXĐ)

\(=\left(2-\sqrt{3}\right)^2\)

\(B=\frac{2}{\sqrt{x}-2}=\frac{2}{\sqrt{\left(2-\sqrt{3}\right)^2}-2}\)

\(=\frac{2}{2-\sqrt{3}-2}=-\frac{2\sqrt{3}}{3}\)

\(b,P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

\(=\frac{2}{\sqrt{x}-2}:\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}:\frac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2}{\sqrt{x}-2}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

Đọc tiếp...

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: