Giúp tôi giải toán


Thiên An 8 giờ trước (20:45)
Báo cáo sai phạm

Ta có

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{ab^2+b^2}{b^2+1}\ge\left(a+1\right)-\frac{ab^2+b^2}{2b}=\left(a+1\right)-\frac{ab+b}{2}\)   (1)

Tương tự  \(\frac{b+1}{c^2+1}\ge\left(b+1\right)-\frac{bc+c}{2}\)   (2)

và  \(\frac{c+1}{a^2+1}\ge\left(a+1\right)-\frac{ca+a}{2}\)   (3)

Cộng (1), (2), (3) vế theo vế:

\(VT\ge\left(a+b+c+3\right)-\frac{\left(ab+bc+ca\right)+\left(a+b+c\right)}{2}\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+3}{2}=3\)

Đẳng thức xảy ra  \(\Leftrightarrow a=b=c=1\)

Thiên An 9 giờ trước (20:20)
Báo cáo sai phạm

Vì a, b, c > 0

Ta có  \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{3^2}{3}=3\)

 Áp dụng BĐT Cauchy-Schwarz dạng Engel

\(VT=\frac{1}{1+ab}+\frac{1}{1+bc}+\frac{1}{1+ca}\ge\frac{\left(1+1+1\right)^2}{3+\left(ab+bc+ca\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}a=b=c\\\frac{1}{1+ab}=\frac{1}{1+bc}=\frac{1}{1+ca}\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=c\)

alibaba nguyễn CTV 12 giờ trước (16:39)
Báo cáo sai phạm

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)

Thắng Nguyễn CTV 25/05/2017 lúc 21:59
Báo cáo sai phạm

Từ \(2a+2b+2c=3abc\)

\(\Leftrightarrow\frac{2}{3bc}+\frac{2}{3ac}+\frac{2}{3ab}=1\left(1\right)\)

Khi đó \(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}\)

Áp dụng BĐT AM-GM ta có: 

\(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}\ge3\sqrt[3]{\frac{b}{a^2}\cdot\frac{c}{b^2}\cdot\frac{a}{c^2}}=3\sqrt[3]{\frac{1}{abc}}\)

\(P_{Min}\) xảy ra khi \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}=3\sqrt[3]{\frac{1}{abc}}\forall a=b=c\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow a=b=c=\sqrt{2}\)

Khi đó \(P_{Min}=3\sqrt[3]{\frac{1}{abc}}-\frac{2}{a^2}-\frac{2}{b^2}-\frac{2}{c^2}=\frac{3\sqrt{2}-6}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{2}\)

Lê Minh Đức 26/05/2017 lúc 18:39
Báo cáo sai phạm

Bài này giải như này cơ:

\(2a+2b+2c=3abc\)\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{3}{2}\)

\(P=\frac{\left(a-1\right)+\left(b-1\right)}{a^2}+\frac{\left(b-1\right)+\left(c-1\right)}{b^2}+\frac{\left(c-1\right)+\left(a-1\right)}{c^2}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(a-1\right)\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+\left(b-1\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\left(c-1\right)\left(\frac{1}{b^2}+\frac{1}{c^2}\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{2\left(a-1\right)}{ac}+\frac{2\left(b-1\right)}{ab}+\frac{2\left(c-1\right)}{bc}-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\)

\(\ge\sqrt{3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}-3=\sqrt{3.\frac{3}{2}}-3=\frac{3\sqrt{2}-6}{2}\)

Vậy \(minP=\frac{3\sqrt{2}-6}{2}\Leftrightarrow a=b=c=\sqrt{2}\)

Trần Thùy Dung CTV 28/05/2017 lúc 21:19
Báo cáo sai phạm

cả 2 cách đều hay :*

Thắng Nguyễn CTV 25/07 lúc 11:02
Báo cáo sai phạm

vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v

Áp dụng BĐT AM-GM ta có:

\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)

\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)

Cộng theo vế 3 BĐT trên ta có:

\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)

\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)

Xảy ra khi \(a=b=c=\frac{1}{3}\)

Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v

Thiên An Hôm qua lúc 21:23
Báo cáo sai phạm

Thanh Long nói hình như đúng rồi đó

Phải là 56.căn7 chứ ko phải 7.căn7 nhỉ

Trần Huỳnh Thanh Long 9 giờ trước (20:16)
Báo cáo sai phạm

Thắng Nguyễn sai rồi nhé

alibaba nguyễn CTV 24/07 lúc 11:11
Báo cáo sai phạm

Sửa đề

\(P=9x^2y^2+y^2-6xy-2y+2\)

\(=\left(9x^2y^2-6xy+1\right)+\left(y^2-2y+1\right)\)

\(=\left(3xy-1\right)^2+\left(y-1\right)^2\ge0\)

Mai Thành Đạt 24/07 lúc 11:20
Báo cáo sai phạm

haizzz,em đã nghĩ sai đề từ khi mới làm ( hèn chi làm hoài ko ra )

LIVERPOOL 22/07 lúc 08:59
Báo cáo sai phạm

P=\(\left(a^2+b^2+c^2+2ab+2ac+2bc\right)+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\)\(+a^3+b^3+c^3-2\left(a^2b+b^2c+c^2a\right)+ab^2+bc^2+ca^2\)\(=1+4\left(ab+bc+ca\right)-\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(a^3+b^3+c^3\right)\)\(-2\left(a^2b+b^2c+c^2a\right)+\left(ab^2+bc^2+ca^2\right)\)\(=1+4\left(ab+bc+ca\right)-3\left(a^2b+b^2c+c^2a\right)\)

Mà \(\left(a^2b+b^2c+c^2a\right)\left(b+c+a\right)\ge\left(ab+bc+ca\right)^2\)

=> \(P\le1+4\left(ab+bc+ca\right)-3\left(ab+bc+ca\right)^2\). Đặt \(ab+bc+ca=t\le\frac{1}{3}\)

=> \(P\le-3\left(t^2-\frac{2}{3}t+\frac{1}{9}\right)+2t+\frac{4}{3}\le-3\left(t-\frac{1}{3}\right)^2+\frac{2}{3}+\frac{4}{3}\le2\)

Dấu bằng xảy ra khi \(t=\frac{1}{3}\)<=> \(a=b=c=\frac{1}{3}\)

Đinh Đức Hùng CTV 20/07/2017 lúc 16:04
Báo cáo sai phạm

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+2b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng với mọi a;b)

Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

Phan Văn Hiếu 21/07/2017 lúc 08:59
Báo cáo sai phạm

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+1+\frac{b}{a}=2+\left(\frac{a}{b}+\frac{b}{a}\right)\)

ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

nên \(2+\frac{a}{b}+\frac{b}{a}\ge2+2=4\)

\(\Rightarrow dpcm\)

Bá đạo sever là tao 20/07/2017 lúc 06:48
Báo cáo sai phạm

ặc :v 

\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0\)

\(\Leftrightarrow\frac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

Ok chưa :v

Le Nhat Phuong 20/07/2017 lúc 06:56
Báo cáo sai phạm

Quy đồng bất đẳng thức 

\(\frac{''xy-1''''x-y''^2}{''x^2+1''''y^2+1''xy+1''}\ge0\forall xy\ge1\)

P/s; Dấu ngoặc ép thay cho dấu ngoặc đơn nhé

Nhã Hy 20/07/2017 lúc 06:52
Báo cáo sai phạm

Cảm ơn bạn =)) Thật sự là mình đã làm gần hết nhưng vì vẫn còn đang loay hoay không biết có nên đổi dấu hay không thôi :'(

Pham Thi Thanh Thuy 19/07/2017 lúc 23:53
Báo cáo sai phạm

áp dụng BĐT cô si dạng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Rightarrow\)\(\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{a+b}{4}\)

tương tự làm tiếp 2 cái còn lại rồi cộng vế theo vế . rút gọn vế phải cho 2 là ra

vũ tiền châu 19/07/2017 lúc 23:30
Báo cáo sai phạm

dễ lăm chỉ cần áp dụng bài toán phụ a2+b2>=2ab là ra chúc bạn làm được bài tốt nhé mình chỉ gợi ý cho thôi

Nguyễn Thiều Công Thành 22/07 lúc 22:23
Báo cáo sai phạm

\(\frac{a^2+c^2}{2}\ge ac;\frac{b^2+c^2}{2}\ge bc;\frac{a^2+d^2}{2}\ge ad;\frac{b^2+d^2}{2}\ge bd\)

cộng các bất đẳng thức trên=>đpcm

Nhã Hy 19/07/2017 lúc 23:53
Báo cáo sai phạm

vũ tiền châu: Bạn có thể nói rõ hơn một chút được không ạ? Vậy có cần biến đổi c^2+ d^2>=2cd không?

Bá đạo sever là tao 19/07/2017 lúc 23:12
Báo cáo sai phạm

quy đồng BĐT \(\frac{\left(xy-1\right)\left(x-y\right)^2}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\forall xy\ge1\)

Đinh Đức Hùng CTV 19/07/2017 lúc 12:50
Báo cáo sai phạm

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(1x+1y+1z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+y^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\ge\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{3}\)

...

Dưới đây là những câu có bài toán hay do Online Math lựa chọn.

....

Đố vuiToán có lời vănToán đố nhiều ràng buộcGiải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácHệ thức lượngViolympicGiải toán bằng máy tính cầm tayToán tiếng AnhGiải trí

Có thể bạn quan tâm



Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π

Công thức: