K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

\(BDT\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)

\(\Leftrightarrow\frac{c-a}{a+b}+\frac{2\left(c-b\right)}{a+b}+\frac{b-a}{a+c}+\frac{2\left(b-c\right)}{a+c}+\frac{a-b}{b+c}+\frac{a-c}{b+c}\ge0\)

\(\Leftrightarrow\left(c-a\right)^2\frac{1}{\left(a+b\right)\left(b+c\right)}+2\left(b-c\right)^2\frac{1}{\left(a+c\right)\left(a+b\right)}+\left(a-b\right)^2\frac{1}{\left(a+c\right)\left(b+c\right)}\ge0\)

BĐT cuối đúng nên ta có ĐPCM

Xảy ra khi \(a=b=c\)

31 tháng 12 2017

Tại t nháp luôn vào chỗ để gửi trả lời nên khi gửi ko nhìn lại nó hơi tắt. Hết dòng thứ 2, bắt đầu dòng thứ 3:

\(\Leftrightarrow\left(\frac{c-a}{a+b}+\frac{a-c}{b+c}\right)+\left(\frac{2\left(b-c\right)}{a+c}+\frac{2\left(c-b\right)}{a+b}\right)+\left(\frac{a-b}{b+c}+\frac{b-a}{a+c}\right)\ge0\)

\(\Leftrightarrow\left(c-a\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+2\left(b-c\right)\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+\left(a-b\right)\left(\frac{1}{b+c}-\frac{1}{a+c}\right)\ge0\)

\(\Leftrightarrow....\)  the last ineq in here ! 

21 tháng 9 2019

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)

\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)

Áp dụng BĐT Cauchy - Schwar:

\(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)(1)

Áp dụng BĐT Nesbit:

\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)\ge3\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\ge5\)

hay \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\ge\left(đpcm\right)\)

24 tháng 6 2018

Ta có: \(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}-5\ge0\)

\(\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)

Giải bất phương trình

Cuối cùng ta được: \(\left(c-a\right)^2\left(\frac{1}{\left(a+b\right)\left(b+c\right)}\right)+2\left(b-c\right)^2\left(\frac{1}{\left(a+c\right)\left(a+b\right)}\right)+\left(a-b\right)^2\) \(\left(\frac{1}{\left(a+c\right)\left(b+c\right)}\right)\ge0\)

BĐT đúng <=> a = b = c

18 tháng 2 2019

Mk nghĩ chỗ kia là cộng :3

\(\frac{a+3c}{a+b}+\frac{a+3b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c+2c}{a+b}+\frac{a+b+2b}{a+c}+\frac{2a}{b+c}\)

\(=\frac{a+c}{a+b}+\frac{2c}{a+b}+\frac{a+b}{a+c}+\frac{2b}{a+c}+\frac{2a}{b+c}\)

\(=2\left(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+b}+\frac{a+b}{a+c}\right)\)

Áp dụng bđt Cauchy: \(\frac{a+c}{a+b}+\frac{a+b}{a+c}\ge2\sqrt{\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b\right)\left(a+c\right)}}=2\)

Áp dụng bđt Nesbit: \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\Leftrightarrow2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\ge3\)

Cộng theo vế suy ra đpcm. "=" khi a=b=c

25 tháng 3 2018

Với [x>1x<−1] ta có: x^3< x^3+2x^2+3x+2<(x+1)^3⇒x^3<y^3<(x+1)^3 (không xảy ra)
Từ đây suy ra −1≤ x ≤1
Mà x∈Z⇒x∈{−1;0;1}
∙∙ Với x=−1⇒y=0
∙∙ Với x=0⇒y= căn bậc 3 của 2 (không thỏa mãn)
∙∙ Với x=1⇒y=2
Vậy phương trình có 2 nghiệm nguyên (x;y) là (−1;0) và (1;2)

25 tháng 3 2018

mình chưa hiểu câu đầu lắm

25 tháng 3 2018

Đề bài  bị cắt rồi kìa bạn...viết đủ rồi mik giải cho

25 tháng 3 2018

viết lại nha

5 tháng 5 2020

Bất đẳng thức cần chứng minh tương đương:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

Ta có: \(\frac{a^2}{b}+3b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)(Theo BĐT Cô - si)

Tương tự ta có: \(\frac{b^2}{c}+3c\ge2\sqrt{2\left(b^2+c^2\right)}\);\(\frac{c^2}{a}+3a\ge2\sqrt{2\left(c^2+a^2\right)}\)

Cộng theo vế của 3 BĐT trên, ta được:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+3\left(a+b+c\right)\ge\)\(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)

Cần chứng minh \(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)\(-3\left(a+b+c\right)\)

\(\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

hay \(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(*)

Sử dụng BĐT quen thuộc: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Đẳng thức xảy ra khi x = y)

Khi đó ta được: \(\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\);\(\sqrt{\frac{b^2+c^2}{2}}\ge\frac{b+c}{2}\);\(\sqrt{\frac{c^2+a^2}{2}}\ge\frac{c+a}{2}\)

Cộng theo vế của 3 BĐT trên, ta được:

\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(đúng với (*))

Đẳng thức xảy ra khi a = b = c

17 tháng 4 2018

a2/b + b2/c + c2/a >= 1/can2 ( can(a2+b2) + ... )

Xét can( (a2+b2)/2 ) = can ( ( (a2/b + b)/2 )nhân(b) ) nhỏ hơn hoặc bằng (a2/b + b)/4 + b/2

Tương tự vậy ta có vế phải nhỏ hơn hoặc bằng 1/4 VT cộng với 3/4(a+b+c)

Mà VT chứng minh theo BCS lớn hơn hoặc bằng a+b+c 

Suy ra VT lớn hơn hoặc bằng VP

Dấu bằng tự tìm

3 tháng 4 2020

Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:

\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)

\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)

\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)

Cộng (1),(2) và (3) có:

\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)

\(\Rightarrow2VP\ge2VT\)

\(\RightarrowĐPCM\)

13 tháng 8 2020

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c