

A = - 2x2 + 4xy - 6y2 - 4y + 5
= (- 2x2 + 4xy - 2y2) + (- 4y2 - 4y - 1) + 6
= - 2(x - y)2 - (2y + 1)2 + 6 \(\le\)6
Đạt được khi x = y = - 0,5
A = - 2x2 + 4xy - 6y2 - 4y + 5
= (- 2x2 + 4xy - 2y2) + (- 4y2 - 4y - 1) + 6
= - 2(x - y)2 - (2y + 1)2 + 6 \(\le\)6
Đạt được khi x = y = - 0,5
-2x2 + 4xy - 6y2 + 4y + 5
= -2x2 + 2xy + 2xy - 2y2 - 4y2 + 2y + 2y - 1 + 6
= -2x(x - y) + 2y(x - y) - 2y(2y - 1) + (2y - 1) + 6
= -2(x - y)2 - (2y - 1)2 + 6\(\le\) 6\(\forall x;y\)
Dấu "=" xảy ra khi\(\left\{\begin{matrix}x-y=0\\2y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=y\\2y=1\end{matrix}\right.\)\(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm gtln và gtnn a) M=10x2 + 6y + 4y2 + 4xy + 2 b) H= -x2 + 2xy - 4y2 + 2x + 10y - 8 c) K= 2x2 + 2xy - 2x + 2xy + y2
Đọc tiếp...Được cập nhật 23 tháng 10 2017 lúc 13:34
a) \(M=10x^2+6y+4y^2+4xy+2\)
\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)
\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)
\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
b) \(H=-x^2+2xy-4y^2+2x+10y-8\)
\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)
\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
c) \(K=2x^2+2xy-2x+2xy+y^2\)
bn xem lại cái đề nhé, sao lại có 2 lần 2xy
Câu c đúng đề mà
vậy bạn làm tương tự câu b là được nhé