K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2020

Từ: \(xy+yz+xz=xyz\) <=> \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(A=\frac{1}{x+2y+3z}+\frac{1}{2x+3y+z}+\frac{1}{2x+y+2z}\)
Áp dụng bđt: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) (tự cm đúng)

Ta có: \(\frac{1}{x+2y+3z}=\frac{1}{x+z+2y+2z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{2y+2z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{2y}+\frac{3}{2z}\right)\) (1)

CMTT:  \(\frac{1}{2x+3y+z}\le\frac{1}{16}\left(\frac{1}{2x}+\frac{1}{z}+\frac{3}{2y}\right)\) (2)

\(\frac{1}{3x+y+2z}\le\frac{1}{16}\left(\frac{3}{2x}+\frac{1}{y}+\frac{1}{2z}\right)\)(3)

Từ (1); (2) và (3) cộng vế theo vế

\(A\le\frac{1}{16}\left(\frac{3}{2z}+\frac{1}{x}+\frac{1}{2y}+\frac{3}{2y}+\frac{1}{z}+\frac{1}{2x}+\frac{3}{2z}+\frac{1}{y}+\frac{1}{2z}\right)\)

\(A\le\frac{3}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{16}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=y+2z\\z=2x+y\\y=x+2z\end{cases}}\) <=> x = y = z = 0

mà x;y;z > 0 => Dấu "=" ko xảy ra 

=> A < 3/16

14 tháng 11 2015

Áp dụng \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\frac{1}{3x+3y+2z}=\frac{1}{2\left(x+y\right)+\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}.\frac{1}{2\left(x+y\right)}+\frac{1}{4}.\frac{1}{x+z+y+z}\le\frac{1}{8\left(x+y\right)}+\frac{1}{4}.\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

9 tháng 1 2019

Ta có bđt \(\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\)

\(\(\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)\)

Áp dụng nhiều lần bđt trên ta được

\(\(\frac{1}{3x+3y+2z}=\frac{1}{\left(2x+y+z\right)+\left(x+2y+z\right)}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}\right)\)\)

\(\(\le\frac{1}{4}\left(\frac{1}{\left(x+y\right)+\left(x+z\right)}+\frac{1}{\left(x+y\right)+\left(y+z\right)}\right)\)\)

\(\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\right]\)\)

\(\(\le\frac{1}{16}\left(\frac{2}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\right)\)\)

C/m tương tự cho các bđt còn lại

\(\(\frac{1}{3x+2y+3z}\le\frac{1}{16}\left(\frac{2}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\right)\)\)

\(\(\frac{1}{2x+3y+3z}\le\frac{1}{16}\left(\frac{2}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\right)\)\)

Cộng vế theo vế được

\(\(P\le\frac{1}{16}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)=\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{1}{4}.6=\frac{3}{2}\)\)

Dấu "=" xảy ra

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{1}{2x}+\frac{1}{2x}+\frac{1}{2x=6}\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\\frac{3}{2x}=6\end{cases}}\)\)

\(\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x=\frac{1}{4}\end{cases}}\)\)

\(\(\Leftrightarrow x=y=z=\frac{1}{4}\)\)

Vậy ..........

10 tháng 1 2019

cách khác :)) 

\(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\)\(\Leftrightarrow\)\(x+y+z\le3\)

\(P=\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\)

\(P=\frac{1}{3\left(x+y+z\right)-z}+\frac{1}{3\left(x+y+z\right)-y}+\frac{1}{3\left(x+y+z\right)-x}\)

\(\ge\frac{9}{9\left(x+y+z\right)-\left(x+y+z\right)}=\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.3}=\frac{3}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

26 tháng 12 2019

Ta có: \(\left(x-\sqrt{yz}\right)^2\ge0\Rightarrow x^2+yz\ge2x\sqrt{yz}\)(Dấu "="\(\Leftrightarrow x^2=yz\))

Theo đề: x + y + z = 3\(\Rightarrow3x+yz=\left(x+y+z\right)x+yz=x^2+yz+x\left(y+z\right)\)\(\ge x\left(y+z\right)+2x\sqrt{yz}\)

Suy ra \(\sqrt{3x+yz}\ge\sqrt{x\left(y+z\right)+2x\sqrt{yz}}=\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)

và \(x+\sqrt{3x+yz}\ge\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\Rightarrow\frac{x}{x+\sqrt{3x+yz}}\le\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự ta có: \(\frac{y}{y+\sqrt{3y+zx}}\le\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\);\(\frac{z}{z+\sqrt{3z+xy}}\le\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng từng vế của các BĐT trên,ta được:

\(\frac{x}{x+\sqrt{3x+yz}}\)\(+\frac{y}{y+\sqrt{3y+zx}}\)\(+\frac{z}{z+\sqrt{3z+xy}}\le1\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

26 tháng 12 2019

We have:

\(VT=\Sigma_{cyc}\frac{x}{x+\sqrt{3x+yz}}=\Sigma_{cyc}\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\Sigma_{cyc}\frac{\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}}{\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+1}\)

Dat \(\left(\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}};\frac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}};\frac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\right)=\left(a;b;c\right)\)

Consider:

\(\Sigma_{cyc}\frac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\Sigma_{cyc}\frac{\frac{x}{x+y}+\frac{x}{x+z}}{2}=\frac{3}{2}\)

\(\Rightarrow a+b+c\le\frac{3}{2}\)

Now we need to prove:

\(\Sigma_{cyc}\frac{a}{a+1}\le1\)

\(\Leftrightarrow\Sigma_{cyc}\frac{1}{a+1}\ge2\left(M\right)\)

\(VT_M\ge\frac{9}{a+b+c+3}\ge\frac{9}{\frac{3}{2}+3}=2\)

Sign '=' happen when \(\hept{\begin{cases}x=y=z=1\\a=b=c=\frac{1}{2}\end{cases}}\)

1 tháng 2 2018

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\)ta có :

\(\frac{16}{3x+3y+2z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)

\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)

Cộng theo vế 3 đẳng thức trên ta được :

\(16.\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\le4.\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=4.6=24\)

\(\Rightarrow\)\(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)

1 tháng 2 2018

Câu hỏi của NGUYỄN DOÃN ANH THÁI - Toán lớp 9 - Học toán với OnlineMath

26 tháng 10 2016

Ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)

Do đó:

\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)

\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)

1 tháng 2 2018

Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)

21 tháng 10 2019

Liên tục áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) và ta có:

\(\frac{1}{3x+3y+2x}=\frac{1}{2\left(x+y\right)+\left(x+y+2z\right)}\le\frac{1}{4}\left(\frac{1}{2\left(x+y\right)}+\frac{1}{\left(x+z\right)+\left(y+z\right)}\right)\le\frac{1}{8\left(x+y\right)}+\frac{1}{16}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

Chứng minh tương tự tạ có:

\(\frac{1}{3x+2y+3z}\le\frac{1}{8\left(z+x\right)}+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)

\(\frac{1}{2x+3y+3z}\le\frac{1}{8\left(y+z\right)}+\frac{1}{16}\left(\frac{1}{z+x}+\frac{1}{x+y}\right)\)

Suy ra \(VT\le\frac{1}{8}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)+\frac{1}{8}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{4}\)

21 tháng 10 2019

mơn ạ

6 tháng 4 2017

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{\left(1+1+1+1\right)^2}{a+b+c+d}=\frac{16}{a+b+c+d}\) ta có: 

\(\frac{16}{2x+3y+3z}\le\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\)

\(\frac{16}{3x+2y+3z}\le\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\)

\(\frac{16}{2x+3y+3z}\le\frac{1}{y+z}+\frac{1}{y+z}+\frac{1}{x+y}+\frac{1}{x+z}\)

Cộng theo vế 3 BĐT trên ta có: 

\(16\left(\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\right)\)

\(\le4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)=4\cdot12=48\)

\(\Rightarrow\frac{1}{2x+3y+3z}+\frac{1}{3x+2y+3z}+\frac{1}{3x+3y+2z}\le3\)

6 tháng 4 2017

các bạn có thể giúp mình giải bài toán này  bằng bất đẳng thức \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{9}{2\left(x+y+z\right)}\)

NV
5 tháng 11 2019

Bài 1:

Đặt \(\left(x+y;y+z;z+x\right)=\left(a;b;c\right)\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

\(P=\frac{1}{2a+b+c}+\frac{1}{a+b+2c}+\frac{1}{a+2b+c}\)

\(P=\frac{1}{a+a+b+c}+\frac{1}{a+b+c+c}+\frac{1}{a+b+b+c}\)

\(\Rightarrow P\le\frac{1}{16}\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{2}{c}+\frac{1}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{6}{4}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\) hay \(x=y=z=\frac{1}{4}\)

NV
5 tháng 11 2019

Bài 2:

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\\left(x+y\right)\left(x^2+y^2-xy\right)=5x+15y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+y^2-xy=5\\5\left(x+y\right)=5x+15y\end{matrix}\right.\)

\(\Rightarrow10y=0\Rightarrow y=0\)

Thay vào pt đầu: \(x^2=5\Rightarrow x=\pm\sqrt{5}\)

Vậy nghiệm của hệ là \(\left(x;y\right)=\left(\sqrt{5};0\right);\left(-\sqrt{5};0\right)\)

4 tháng 10 2016

Áp dụng Bđt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Ta có:

\(\frac{1}{2x+3y+3z}=\frac{1}{\left(x+2y+z\right)+\left(x+y+2z\right)}\)\(\le\frac{1}{4}\left(\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=\frac{1}{4}\cdot\left(\frac{1}{\left(x+y\right)+\left(y+z\right)}+\frac{1}{x+z}+\frac{1}{z+y}\right)\)

\(\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\right]+\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(=\frac{1}{16}\left(6+\frac{1}{y+z}\right)\).Tương tự với 2 cái còn lại r` cộng lại ta đc:

\(P\le\frac{1}{16}\left[6+6+6+\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right]=\frac{3}{2}\)