K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

\(\frac{a}{b+c+2a}=\frac{a}{\left(a+b\right)+\left(a+c\right)}\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\)

Tương tự ta có: 

\(\frac{b}{a+c+2b}\le\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}\)

\(\frac{c}{a+b+2c}\le\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)

Cộng vế theo vế ta có: 

\(\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{c+b}+\frac{c}{a+c}+\frac{c}{b+c}\right)\)

\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c

NV
28 tháng 4 2020

\(VT=\frac{a}{a+b+a+c}+\frac{b}{a+b+b+c}+\frac{c}{a+c+b+c}\)

\(VT\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{b+c}\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

30 tháng 4 2020

Ta có: 

\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\frac{b}{a+2b+c}=\frac{b}{\left(a+b\right)\left(b+c\right)}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\frac{c}{a+b+2c}=\frac{c}{\left(a+c\right)\left(b+c\right)}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

Cộng  vế theo vế:

=> \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c

30 tháng 4 2020

Cách 1:

Biến đổi tương đương bất đẳng thức cần chứng minh

\(1-\frac{a}{2b+b+c}+1-\frac{b}{a+2b+c}+1-\frac{c}{a+b+2c}\ge\frac{9}{4}\)

\(\Leftrightarrow\frac{a+b+c}{2a+b+c}+\frac{a+b+c}{a+2b+c}+\frac{a+b+c}{a+b+2c}\ge\frac{9}{4}\)

\(\Leftrightarrow4\left(a+b+c\right)\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\ge9\)

Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c => x+y+z=4(a+b+c)

Khi đó đẳng thức trên trở thành

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2xz}\ge0\)

BĐT cuối luôn đúng

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c

Cách 2:

Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c

=> \(\hept{\begin{cases}a=\frac{2x-y-z}{4}\\b=\frac{3y-x-z}{4}\\c=\frac{3z-x-y}{4}\end{cases}}\)

BĐT cần chứng minh được viết lại thành

\(\frac{3x-y-z}{4x}+\frac{3y-x-z}{4y}+\frac{3z-x-z}{4z}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\right)\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\ge6\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2zx}\ge0\)

BĐT cuối luôn đúng

Vậy BĐT được chứng minh. Dấu "=" <=> a=b=c

18 tháng 11 2019

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

18 tháng 11 2019

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

23 tháng 5 2021

Có thể là $\frac{{{a}^{2}}b}{2a+b}+\frac{{{b}^{2}}c}{2b+c}+\frac{{{c}^{2}}a}{2c+a}\le 1$

4 tháng 12 2016

Theo bài ra ta có \(0\le a\le b\le c\) nên b\(+\)\(\ge\)2b

Do đó suy ra \(\frac{2a^2}{b+c}\le\frac{2a^2}{2b}\)suy ra \(\frac{2a^2}{b+c}\le\frac{a^2}{b}\)

Chưng minh tương tự có \(\frac{2b^2}{c+a}\le\frac{b^2}{c}\)và \(\frac{2c^2}{a+b}\le\frac{c^2}{a}\)

Cộng vế với vế của các bđt cùng chiều trên ta sẽ suy ra điều phải chứng minh

#nga

4 tháng 12 2016

Sai rồi nếu như theo cách chứng minh của bạn thì ta có: a + c \(\ge2c\)cái này vô lý. 

20 tháng 2 2020

Theo e nghĩ là đề phải như này cơ ạ :

\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)

Biến đổi và sử dụng Cô - si là sẽ ra :

Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)

\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)

\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)

\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

20 tháng 2 2020

Đề không sai đâu:P

\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)

\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)

4 tháng 12 2019

Violympic toán 9

6 tháng 12 2019

Lớp 8 học BĐT svacxơ chưaCTV rẻ rách