K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

Áp dụng bđt AM-GM ta có 

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)(1)

\(abc\le\frac{\left(a+b+c\right)^3}{27}=1\)(2)

(1),(2) \(\Rightarrow a^3+b^3+c^3\ge3\)

Dấu"=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(A_{min}=3\Leftrightarrow a=b=c=1\)

10 tháng 5 2020

AD Bđt phụ ta có 

A= \(a^3+b^3+c^3\ge\frac{1}{3}\left(a+b+c\right)^2\)Dấu = khi a=b=c

\(A\ge\frac{1}{3}.3^2=3\)

=> Amin =3 khi a=b=c=1

AH
Akai Haruma
Giáo viên
1 tháng 1

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4})(1+1+1)\geq (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})^2(1)$

$(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2})(1+1+1)\geq (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2(2)$

$(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})(a+b+c)\geq (1+1+1)^2$

$\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{9}{a+b+c}=9$(3)$

Từ $(1); (2); (3)$ suy ra:
$\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\geq \frac{9^4}{27}=243$
Vậy GTNN của biểu thức là 243 khi $a=b=c=\frac{1}{3}$

NV
2 tháng 1

Đặt \(P=\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\) (do \(a+b+c=1\))

\(P=\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\left(a+b+c\right)^4\ge3\sqrt[3]{\dfrac{1}{a^4.b^4.c^4}}.\left(3\sqrt[3]{abc}\right)^4=3^5=243\)

\(P_{min}=243\) khi \(a=b=c=\dfrac{1}{3}\)

7 tháng 12 2020

bạn kiểm tra lại xem có sai đề không

NV
8 tháng 5 2021

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)