K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Với n= 3 ,  ,chọn x3 =y3 =1

Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp 

\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),

\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)

Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\)

\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)

Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm 

20 tháng 2 2019

Ta có: p+(p+2)=2(p+1)

Vì p lẻ nên  ( p + 1 ) ⋮ 2 = > 2 ( p + 1 ) ⋮ 4 (1)

Vì p, (p+1), (p+2) là 3 số tự nhiên liên tiếp nên có ít nhất một số chia hết cho 3, mà p và (p+2) nguyên tố nên  ( p + 1 ) ⋮ 3 (2)

Từ (1) và (2) suy ra   p + ( p + 2 ) ⋮ 12 (đpcm)

Chứng minh bằng cách phản chứng

Giả sử tồn tại số nguyên tố p thõa mãn

Đặt 3p + 19 ( p - 1 ) = n2 ( n là một số nguyên )

* Nếu p = 2, 3 dễ thấy không có số số nguyên n nào thõa mãn

* Nếu p > 3 , p lẻ

+ ) p = 4k + 1

Ta có : 3 ≡ - 1 ( mod4 )

nên 3p ≡ - 1 ( mod4 )

và 19 ≡ 3 ( mod4 ) ; p - 1 ≡ 0 ( mod4 )

Do đó VT  ≡ VP ≡ - 1 ( mod4 ) ( vô lí )

+ ) p = 4k + 3

Theo định lí Fermat ta có :

3p  ≡ 3 ( modp )

và 19 ( p - 1 ) ≡ - 19 ( modp )

nên VT ≡ - 16 ( modp )

Do đó n2 + 16 \(⋮\) p

Từ đề ta có 4 \(⋮\) p ( vô lí vì 4 không có ước dạng 4k + 3 )

Vậy ta có đpcm

Gỉa sử tồn tại số nguyên p thỏa mãn 

Đặt \(3^p+19\left(p-1\right)=n^2\)( n là 1 số nguyên )

* Nếu p=2,3 . Dễ có ko có số nguyên n nào thỏa mãn 

* Nếu p>3 , p lẻ 

+) p=4k +1

Ta có 

\(3=-1\left(modA\right)\)

nên : \(3^p=-1\left(modA\right)\)

Mà \(19\equiv3\left(modA\right);p-1\equiv0\left(modA\right)\)

Do đó : \(VT\equiv VP\equiv-1\left(modA\right)\)( vô lí )

+) p=4k+3

Theo định lí Fermat ta có 

\(3^p=3\left(modp\right)\)

và \(19\left(p-1\right)\equiv-19\left(modp\right)\)

nên \(VT\equiv-16\left(modp\right)\)

Do đó : \(n^2+16⋮p\)

-> Ta có : \(4⋮b\)( vô lí )

Vậy ta có đpcm