K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2019

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

27 tháng 5 2017

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

27 tháng 5 2017

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

29 tháng 4 2018

We have : \(A=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)

By Cauchy - Schwarz and AM - GM have :

\(A\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}+\frac{1}{2.\frac{\left(a+b\right)^2}{4}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}=\frac{6}{\left(a+b\right)^2}\ge6\)

Then greatest posible of A is 6 when \(a=b=\frac{1}{2}\)

29 tháng 4 2018

\(A=\frac{1}{a^2+b^2}+\frac{1}{ab}=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)2}{2}}\ge4+2=6\)

"=" khi \(a=b=\frac{1}{2}\)

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

4 tháng 10 2020

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

1 tháng 12 2019

Dự đoán điểm rơi \(a=b=c=\frac{1}{3}\)

Khi đó:

\(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(=\left(a+b+c+\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)+8\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)

\(\ge6\sqrt[6]{a\cdot b\cdot c\cdot\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}+24\sqrt[3]{\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}\)

\(=2+\frac{8}{3}\cdot\frac{1}{\sqrt[3]{abc}}\ge2+\frac{8}{3}\cdot\frac{1}{\frac{a+b+c}{3}}\ge10\)

2 tháng 12 2019

Mù mắt với AM-GM cho 10 số:v

\(S=\left(a+b+c\right)+9\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)\(\ge10\sqrt[10]{\left(a+b+c\right)\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)^9}\)\(\ge10\sqrt[10]{\left(3\sqrt[3]{abc}\right)\left[3\sqrt[3]{\frac{1}{9^3abc}}\right]^9}=10\sqrt[10]{\left(3\sqrt[3]{abc}\right).\left[3^9\left(\frac{1}{9^3abc}\right)^3\right]}\)

\(=10\sqrt[10]{3^{10}.\frac{\sqrt[3]{abc}}{\left(3^6abc\right)^3}}=10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left(abc\right)^8}}}\ge10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left[\frac{\left(a+b+c\right)^3}{27}\right]^8}}}\ge10\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

Vậy.....