Giải toán trên mạng


Báo cáo sai phạm

 16: Tìm nghiệm nguyên của phương trình

x2 –xy + y2 = 3

          Hướng dẫn:

Ta có x2 –xy + y2 = 3 ⇔ (x- )2 = 3 – 

Ta thấy (x- )2 = 3 –  ≥ 0

⇒ -2 ≤ y ≤ 2

⇒ y= ± 2; ±1; 0 thay vào phương trình tìm x

Ta được các nghiệm  nguyên của phương trình là :

(x, y) = (-1,-2), (1, 2); (-2, -1); (2,1) ;(-1,1) ;(1, -1)


Báo cáo sai phạm

 15: Tìm nghiệm nguyên của phương trình

x2 – (y+5)x + 5y + 2 = 0

Hướng dẫn:

Ta có x2 – (y+5)x + 5y + 2 = 0 coi y là tham số ta có phương trình bậc 2 ẩn x.  Giả sử phương trình bậc 2 có 2 nghiệm x1, x2

Ta có: 

⇒  

⇒ 5 x1 + 5x2 – x1x2 = 23

⇔ (x1 -5) (x2 -5) = 2 Mà 2 = 1.2 = (-1)(-2)

⇒ x1 + x2 = 13 hoặc x1 + x2 = 7 ⇒ y = 8 hoặc y = 2

thay vào phương trình ta tìm được các cặp số

(x,y ) = (7, 8); (6, 8); (4, 2); (3, 2); là nghiệm của phương trình


Báo cáo sai phạm

14: Giải phương trình nghiệm nguyên

3x2 + y2 + 4xy + 4x + 2y + 5 = 0

          Hướng dẫn:

Ta có PT:  3x2 + y2 + 4xy + 4x + 2y + 5 = 0

⇒ y2 + (4x + 2)y + 3 x2 + 4x + 5 = ) (*) coi x là tham số giải phương trình bậc 2 pt (*) ẩn y ta có

⇒ (x- n) (x+ n) = 4 ⇒ x – n = x + n = ± 2 ⇒ x = ± 2

Vậy phương trình có nghiệm nguyên

(x, y) = (2; -5); (-2, 3)


Báo cáo sai phạm

13: Tìm nghiệm nguyên của phương trình

                    x2 + y2 + z2 = x2 y2

Hướng dẫn:

Nếu x, y đều là số lẻ ⇒ x2 , y2 chia cho 4 đều dư 1

Đặt x = 2x1, y = 2y1, z = 2z1

Ta có x+ y+z = xy

lập luận tương tự ta có x + y + z = 16 xy

Quá trình này cứ tiếp tục ta thấy  (x1, y1, z1 ) là nghiệm của phương trình thì

 là nghiệm của phương trình với k nguyên dương

⇒ x1 = y1 = z1 = 0

Vậy phương trình có nghiệm là (0, 0, 0)


Báo cáo sai phạm

12: Tìm nghiệm nguyêm của phương trình

                        x2 – 5y2 = 0

          Hướng dẫn:

Giả sử x0, y0 là nghiệm của phương trình x2 – 5y2 = 0

Vậy phương trình có nghiệm duy nhất là x = y = 0


Báo cáo sai phạm

11: Tìm nghiệm nguyên của phương trình

                                  x2 – 4xy + 5y = 169

          Hướng dẫn:   Ta có x2 – 4xy + 5y = 169 ⇔ (x – 2y)2 + y2 = 169

Ta thấy  169 = 02 + 132 = 52  + 122

Giải ra ta được (x, y) = (29, 12);(19, 12); (-19, -12); (22, 5); (-2, 5) ;(2, -5); (-22, -5); (26, 13); (-26, -13); (-13. 0); (13, 0)


Báo cáo sai phạm

10: Tìm nghiệm nguyên của phương trình

                             x2 + y2 – x – y = 8

          Hướng dẫn:

Ta có x2 + y2 –x – y = 8 ⇒ 4 x2 + 4 y2 – 4 x –4y = 32

⇔ (4x2 – 4x +1) + (4y2 – 4y + 1) = 34 ⇔ (2x – 1)2 + (2y – 1)2 = 34

Bằng phương pháp thử chọn ta thấy 34 chỉ có duy nhất 1 dạng phân tích thành tổng của 2 số chính phương 32 và 52

Do đó ta có    hoặc 

Giải ra ta được (x,y) = (2,3); (2,-2); (-1, -2); (-1, 3) và các hoán vị của nó.


Báo cáo sai phạm

 9: Tìm x, y, z nguyên tố thoả mãn   xy + 1 = z

          Hướng dẫn:

Ta có x, y nguyên tố và xy + 1 = z ⇒ z > 3

Mà z nguyên tố ⇒ z lẻ ⇒ xy chẵn ⇒ x chẵn  ⇒ x = 2

Xét y = 2 ⇒ 22 + 1 = 5 là nguyên tố ⇒ z = 5 (thoả mãn)

Xét y> 2 ⇒ y = 2k + 1 (k ∈ N) ⇒ 22k+1 + 1 = z ⇒ 2. 4k + 1 = z

Có 4 chia cho 3 dư 1 ⇒ (2.4k+1) chia hết cho 3 ⇒ z chia hết cho 3   không thỏa mãn (loại)

Vậy x = 2, y = 2, z = 5 thoả mãn


Báo cáo sai phạm

 8: Tìm x, y là số tự nhiên thoả mãn

                     x2 + 3y = 3026

          Hướng dẫn:

Xét y = 0 ⇒ x2 + 30 = 3026 ⇒ x2 = 3025

mà xº ∈ N ⇒ x = 55

Xét y > 0 ⇒ 3y chia hết cho 3, x2 chia cho 3 dư 0 hoặc 1

⇒ x2 + 3chia cho 3 dư 0 hoặc 1

mà 3026 chia cho 3 dư 2 (loại)

Vậy nghiệm  (x,y) = (55,0)


Báo cáo sai phạm

7: Tìm nghiệm nguyên của phương trình

x2 – 2y2 = 5

Hướng dẫn:

và x2 chia cho 5 có các số dư 1 hoặc 4

y2 chia cho 5 có các số dư 1 hoặc 4 ⇒ 2y2 chia cho 5 dư 2 hoặc 3

⇒ x2 – 2 y2 chia cho 5 dư ±1 hoặc ±2 (loại)

Vậy phương trình x2 – 2y2 = 5 vô nghiệm.

Gợi ý cho bạn

Có thể bạn quan tâm

Toán lớp 10Đố vuiToán có lời vănToán lớp 11Toán đố nhiều ràng buộcToán lớp 12Giải bằng tính ngượcLập luậnLô-gicToán chứng minhChứng minh phản chứngQui nạpNguyên lý DirechletGiả thiết tạmĐo lườngThời gianToán chuyển độngTính tuổiGiải bằng vẽ sơ đồTổng - hiệuTổng - tỉHiệu - tỉTỉ lệ thuậnTỉ lệ nghịchSố tự nhiênSố La MãPhân sốLiên phân sốSố phần trămSố thập phânSố nguyênSố hữu tỉSố vô tỉSố thựcCấu tạo sốTính chất phép tínhTính nhanhTrung bình cộngTỉ lệ thứcChia hết và chia có dưDấu hiệu chia hếtLũy thừaSố chính phươngSố nguyên tốPhân tích thành thừa số nguyên tốƯớc chungBội chungGiá trị tuyệt đốiTập hợpTổ hợpBiểu đồ VenDãy sốHằng đẳng thứcPhân tích thành nhân tửGiai thừaCăn thứcBiểu thức liên hợpRút gọn biểu thứcSố họcXác suấtTìm xPhương trìnhPhương trình nghiệm nguyênPhương trình vô tỉCông thức nghiệm Vi-etLập phương trìnhHệ phương trìnhBất đẳng thứcBất phương trìnhBất đẳng thức hình họcĐẳng thức hình họcHàm sốHệ trục tọa độĐồ thị hàm sốHàm bậc haiĐa thứcPhân thức đại sốĐạo hàm - vi phânLớn nhất - nhỏ nhấtHình họcĐường thẳngĐường thẳng song songĐường trung bìnhGócTia phân giácHình trònHình tam giácTam giác bằng nhauTam giác đồng dạngĐịnh lý Ta-letTứ giácTứ giác nội tiếpHình chữ nhậtHình thangHình bình hànhHình thoiHình hộp chữ nhậtHình ba chiềuChu viDiện tíchThể tíchQuĩ tíchLượng giácNgữ văn 10Hệ thức lượngViolympicNgữ văn 11Ngữ văn 12Giải toán bằng máy tính cầm tayToán tiếng AnhGiải tríTập đọcKể chuyệnTập làm vănChính tảLuyện từ và câuTiếng Anh lớp 10Tiếng Anh lớp 11Tiếng Anh lớp 12

Có thể bạn quan tâm


Tài trợ

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web hoc24.vn để được giải đáp tốt hơn.


sin cos tan cot sinh cosh tanh
Phép toán
+ - ÷ × = ∄ ± ⋮̸
α β γ η θ λ Δ δ ϵ ξ ϕ φ Φ μ Ω ω χ σ ρ π ( ) [ ] | /

Công thức: