K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2020

2) Ta có: Áp dụng bất đẳng thức:

\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)

Tương tự chứng minh được:

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế 3 bất đẳng thức trên với nhau ta được:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c\)

7 tháng 8 2017

hệ quả của Schur nhé

7 tháng 8 2017

a/ Ta có:

\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{cases}}\)

Lấy (1), (2), (3) nhân vế theo vế ta được

\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

15 tháng 7 2016

1) Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có : \(\left(x^{10}+y^{10}\right)\left(x^2+y^2\right)\ge\left(x^8+y^8\right)\left(x^4+y^4\right)\left(1\right)\)

\(\Leftrightarrow x^{12}+x^{10}y^2+y^{10}x^2+y^{12}\ge x^{12}+x^8y^4+y^8x^4+y^{12}\)

\(\Leftrightarrow x^{10}y^2+y^{10}x^2\ge x^8y^4+y^8x^4\)

\(\Leftrightarrow x^2y^2\left(x^8+y^8-x^6y^2-x^2y^6\right)\ge0\)

\(\Leftrightarrow x^2y^2\left[\left(x^8-x^6y^2\right)+\left(y^8-x^2y^6\right)\right]\ge0\)

\(\Leftrightarrow x^2y^2\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x^3-y^3\right)\left(x^3+y^3\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x-y\right)^2\left(x+y\right)^2\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\ge0\)(2)

Ta thấy : \(x^2-xy+y^2=\frac{\left(x^2-2xy+y^2\right)+x^2+y^2}{2}=\frac{\left(x-y\right)^2+x^2+y^2}{2}\ge0\)

\(x^2+xy+y^2=\frac{\left(x+y\right)^2+x^2+y^2}{2}\ge0\)  ; \(x^2y^2\left(x-y\right)^2\left(x+y\right)^2\ge0\)

Do đó (2) luôn đúng.

Vậy (1) được chứng minh. 

15 tháng 7 2016

thank nha ngọc