K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

Thay x+y+z=1 vào biểu thức C, ta được:

\(C=\left(x+y+z-x\right)\left(x+y+z-y\right)\left(x+y+z-z\right)\)

\(C=\left(y+z\right)\left(z+x\right)\left(x+y\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Ta có: \(x^3+y^3+z^3=\frac{1}{9}\Leftrightarrow\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{1}{9}\)

Thay x+y+z=1. Suy ra \(1-3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{1}{9}\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{9}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{9.3}=\frac{8}{27}\)

\(\Rightarrow C=\left(x+y\right)\left(y+z\right)\left(z+x\right)=\frac{8}{27}.\)

ĐS:...

5 tháng 7 2018

2.

Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = 1

1: 

Áp dụng bất đẳng thức Cô si:

\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)

\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)

\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)

\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)

\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)

\(=1\left[1+\frac{1}{4}\right]\)

\(=1+\frac{5}{4}=\frac{9}{4}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)

5 tháng 7 2018

2. áp dạng bất đẳng thức cauchy - schwarz dạng engel

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

dấu bằng xay ra khi x=y=z=1

1 tháng 5 2020

Bài 1:

Đặt a=x-1; b=y-1; c=z-1. Khi đó a;b;c\(\in\)[-1;1], a+b+c=0 và 

\(P=\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3-3abc\)

\(=a^3+b^3+c^3-3abc+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3\left(a^2+b^2+c^2\right)+3\left(a+b+c\right)+3\)

\(=3\left(a^2+b^2+c^2\right)+3\)

Ta có: \(0\le a^2+b^2+c^2\le2\)

Từ đây ta dễ thấy Min P=3 đạt được khi x=y=z=1

1 tháng 5 2020

Ta xét tống T của 3 số x(1-y);y(1-x);z(1-x)

Ta có T=x(1-y)+y(1-z)+z(1-x)=x+y+z-xy-xz-yz

Theo giả thiết xyz=(1-x)(1-y)(1-z)=1-(x+y+z-xy-xz-yz)-xyz

=> 2xyz=1-T => T=1-2xyz

Nhưng x2y2z2 =[x(1-x)][y(1-y)][z(1-z)]\(\le\frac{1}{4}\cdot\frac{1}{4}\cdot\frac{1}{4}=\frac{1}{64}\)

=> xyz\(\le\)\(\frac{1}{8}\Rightarrow2xy\le\frac{1}{4}\)

Vậy \(T\ge1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(T\ge\frac{3}{4}\)nên trong 3 số x(1-x), y(1-y), z(1-z) có ít nhất một trong 3 số đó \(\ge\frac{1}{4}\left(đpcm\right)\)

31 tháng 3 2019

Bài này chỉ vận dụng phân tích đa thức thành nhân tử thôi

Có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=6xyz\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=6xyz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=3xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2+y^3+z^3=3xyz\left(x+y+z+1\right)\)

Do đó: \(x^3+y^3+z^3+1=3xyz\left(x+y+z+1\right)+1⋮x+y+z+1\)

Suy ra: \(1⋮x+y+z+1\)

 \(\Rightarrow x+y+z+1=1\)( do \(x,y,z\ge0\Rightarrow x+y+z+1\ge1\))

\(\Leftrightarrow x=y=z=0\)

Vậy \(x=y=z=0\)