Bài học cùng chủ đề
- Dấu của tam thức bậc hai
- Tam thức bậc hai
- Định lí về dấu của tam thức bậc hai
- Cách xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng định lí về dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng đồ thị hàm số
- Tam thức bậc hai và định lí về dấu của tam thức bậc hai
- Xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai
- Bài toán sử dụng định lí về dấu có chứa tham số
- Phiếu bài tập: Dấu của tam thức bậc hai
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Thông tin của bạn
Hãy đăng nhập hoặc nhập tên của bạn để làm bài thi!
Nếu bạn đã có tài khoản OLM:
CHÚC MỪNG
Bạn đã nhận được sao học tập

Chú ý:
Thành tích của bạn sẽ được cập nhật trên bảng xếp hạng sau 1 giờ!
Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Đây là bản xem thử, hãy nhấn Bắt đầu làm bài để bắt đầu luyện tập với OLM
Tam thức bậc hai f(x)=2x2+2x+5 nhận giá trị dương khi và chỉ khi
A
x∈(−∞;2).
B
x∈R.
C
x∈(0;+∞)
D
x∈(−2;+∞).
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Phương trình 2x2−(m2−m+1)x+2m2−3m−5=0 có hai nghiệm phân biệt trái dấu khi và chỉ khi
A
m≤−1 hoặc m≥25.
B
−1<m<25.
C
m<−1 hoặc m>25.
D
−1≤m≤25.
Có tất cả bao nhiêu giá trị nguyên của m để phương trình 2x2+2(m+2)x+3+4m+m2=0 có nghiệm?
A
4.
B
3.
C
1.
D
2.
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi
A
m∈(−∞;−4]∪[0;+∞).
B
m∈(−∞;−4).
C
m∈(−∞;−4]∪(0;+∞).
D
m∈(−∞;−4].
Giải bất phương trình x(x+5)≤2(x2+2).
A
x≥4.
B
x∈(−∞;1]∪[4;+∞).
C
x≤1.
D
1≤x≤4.
OLMc◯2022