
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dưới đây là một vài câu hỏi có thể liên quan tới câu hỏi mà bạn gửi lên. Có thể trong đó có câu trả lời mà bạn cần!

allain top
26 tháng 5 2022 lúc 18:28
1

13 tháng 6 lúc 9:38
Trên tia đối của tia DC lấy E sao cho DE=BM
Xét ΔABM vuông tại B và ΔADE vuông tại D có
AB=AD
BM=DE
=>ΔABM=ΔADE
=>AM=AE
góc BAM+góc MAN+góc NAD=góc BAD=90 độ
=>góc BAM+góc NAD=45 độ
=>góc EAN=45 độ
Xét ΔEAN và ΔMAN có
AE=AM
góc EAN=góc MAN
AN chung
=>ΔEAN=ΔMAN
=>EN=MN
C CMN=CM+MN+CN
=CM+MN+CN
=CM+ED+DN+CN
=CM+BM+DN+CN
=BC+CD=1/2*C ABCD

Giao Khánh Linh
12 tháng 11 2019 lúc 23:00
0


Trương Ngọc Sang
29 tháng 10 2019 lúc 23:11
0


Le Phuong Thao
30 tháng 9 2017 lúc 14:21
0


Trần Anh
30 tháng 6 2019 lúc 9:14
0


fan FA
1 tháng 7 2018 lúc 16:25
0


Nguyễn Hoàng Thái
8 tháng 11 2016 lúc 22:10
0


Huỳnh Thị Kiều Hoa
5 tháng 10 2017 lúc 21:14
0


Lê Đức Anh
29 tháng 7 2018 lúc 20:18
1

29 tháng 7 2018 lúc 20:23
\(B=1+3+3^2+3^3+...+3^{2018}\)
=> \(3B=3+3^2+3^3+3^4+...+3^{2019}\)
=> \(2B=3B-B=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)
=> \(2B=3^{2019}-1\)
=> \(B=\frac{3^{2019}-1}{2}\)
Gọi chu vi tam giác CMN bằng p.
Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.
Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.
Ta đã có, CB’ = CD’ = p2p2 = CB = CD ⇒⇒ B’ ≡≡ B và D ≡≡ D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.
Từ đó, ˆMAN=ˆMAC+ˆNAC=12(ˆBAC+ˆDAC)=45∘MAN^=MAC^+NAC^=12(BAC^+DAC^)=45∘.
Gọi chu vi tam giác CMN bằng p.
Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.
Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.
Ta đã có, CB’ = CD’ = \frac{p}{2}2p = CB = CD \Rightarrow⇒ B’ \equiv≡ B và D \equiv≡ D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.
Từ đó, \widehat{MAN}=\widehat{MAC}+\widehat{NAC}=\frac{1}{2}\left(\widehat{BAC}+\widehat{DAC}\right)={45}^\circMAN=MAC+NAC=21(BAC+DAC)=45∘.