K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chia A thành 3 tập hợp:

B={1;4;7}; C={2;5;8}; D={0;3;6}

TH1: 2 số trong B, 2 số trong C

=>Có \(C^2_3\cdot C^2_3\cdot4!=216\left(cách\right)\)

TH2: 1 số trong B, 1 số trong C, số 0 và 1 số trong D

=>Có 3*3*1*2*3*3*2*1=324 cách

TH3: 1 số trong B, 1 số trong C, 2 số khác 0 trong D

=>Có 3*3*1*4!=216 cách

TH4: 3 số trong B, số 0

=>Có 3*3*2*1=18 cách

TH5: 3 số trong B, 1 số khác 0 trong D

=>Có 2*4!=24*2=48 cách

TH6: 3 số trong C, số 0

=>Có 3*3*2*1=18 cách

TH7: 3 số trong C, 1 số khác 0 trong D

=>Có 2*4!=48 cách

=>Có 216+324+216+18+48+18+48=888 cách

NV
27 tháng 2 2023

Khi lập một số từ 1 tập sao cho chia hết cho 3 thì thường đầu tiên là ta sẽ chia tập hợp ban đầu thành 3 tập nhỏ theo số dư khi chia 3: tập B={0;3;6} gồm 3 phần tử là các số chia 3 dư 0, tập C={1;4} chia 3 dư 1, tập D={2;5} chia 3 dư 2

4 chữ số chia hết cho 3 khi tổng của nó chia hết cho 3, ta có các trường hợp: 2B+1C+1D (nghĩa là 2 phần tử thuộc B+1 phần tử thuộc C+1 phần tử thuộc D), 2C+2D

Chỉ có 2 cách trên là thỏa mãn

TH1: 2B1C1D: 

- Nếu trong 2 phần tử B có xuất hiện số 0: có 2 cách chọn (02;06), chọn 1C có 2 cách, chọn 1D có 2 cách

Hoán vị 4 chữ số sao cho số 0 ko đứng đầu: 4!-3! cách

Tổng cộng theo quy tắc nhân: \(2.2.2.\left(4!-3!\right)=144\) số

- Nếu 2 phần tử B ko xuất hiện số 0: có 1 cách chọn (3;6), chọn 1C có 2 cách, 1D có 2 cách

Hoán vị 4 chữ số: \(4!\) cách

Tổng: \(1.2.2.4!=96\)

TH2: 2C2D có đúng 1 cách chọn 2 chữ số từ C và 2 chữ số từ D

Hoán vị 4 chữ số này: \(4!=24\) số

Vậy có: \(144+96+24=264\) số

NV
27 tháng 2 2023

Ủa em đã học tới tổ hợp chưa nhỉ? Chương trình mới là lớp 10 có học tổ hợp đúng ko?

16 tháng 4 2023

Gọi số cần tìm là \(\overline{abcd}\)

TH1 : a = 6

Số cách chọn chữ số a : 1 cách

Số cách chọn chữ số b : 2 cách 

Số cách chọn chữ số c,d : \(A^2_6\)

=> Số các số lập được \(1.2.A^2_6\)

TH2 : a = 7 hoặc a = 8

=> Số các số là : \(2.A^3_7\)

Vậy có tất cả : \(P=1.2.A^2_6+2.A_7^3=480\) số

NV
18 tháng 3 2023

Tổng S của 5 chữ số lập từ tập trên luôn thỏa mãn 

\(0+1+2+3+4\le S\le9+8+7+6+5\)

\(\Rightarrow10\le S\le35\)

Mà S chia hết cho 9 \(\Rightarrow S=\left\{18;27\right\}\) (lưu ý rằng 2 số này cộng lại đúng bằng 45, do đó giả sử nếu ta chọn được S=18 như 1;2;3;4;8 chia hết cho 5 thì phần còn lại chính là S=27 tương ứng)

Gọi tập S=18 là A, tập S=27 là B, ta chọn tập A:

TH1: A chứa 0 mà ko chứa 9, chọn 4 chữ số còn lại tổng 18: 

- Các cặp 18; 27; 36; 45 tổng bằng 9 nên chọn 2 trong 4 cặp này có \(C_4^2=6\) cách

Hoán vị 5 chữ số tập A có \(5!-4!\) cách \(\Rightarrow6.\left(5!-4!\right)=576\) số tập A

Hoán vị 5 chữ số tập B tương ứng có \(5!\) cách \(\Rightarrow6.5!=720\) số tập B

- Các bộ 1467; 2358 tổng bằng 18, có 2 cách chọn 1 bộ

Hoán vị 5 chữ số tập A \(\Rightarrow2.\left(5!-4!\right)=192\) số

Hoán vị 5 chữ số tập B tương ứng: \(2.5!=240\) số

TH2: A chứa 9 mà ko chứa 0:

\(\Rightarrow\) Chọn 4 chữ số còn lại có tổng bằng 9, dễ dàng thấy ko có bộ nào thỏa mãn do 1+2+3+4>9

TH3: A chứa cả 0 lẫn 9:

\(\Rightarrow\) Tổng 3 chữ số còn lại bằng 9, ta có các bộ 126; 135; 234;  có 3 bộ

Hoán vị 5 chữ số của A: \(3\left(5!-4!\right)=288\) số

Hoán vị 5 chữ số tập B: \(3.5!=360\) số

TH4: A ko chứa cả 0 lẫn 9:

Có các bộ 12348; 12357; 12456 tổng 3 bộ

Hoán vị tập A: có \(3.5!=360\) số

Hoán vị tập B : \(3.\left(5!-4!\right)=288\) số

\(\Rightarrow\text{576+720+192+240+288+360+360+288=3024}\) số

18 tháng 3 2023

Anh là giáo sư toán rồi ạ, anh giỏi quá =))

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.

+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.

+ Số có 2 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.

Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).

=> Có \(9 + 8 = 17\) (số)

+ Số có 3 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.

Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.

=> Có 9.8+8.8 = 136 (số)

Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.

Gọi số cần tìm là \(\overline{abcdef}\)

TH1: 0,1,2 là 3 số cuối

=>\(\overline{abc012};\overline{abc210}\)

a có 6 cách

b có 5 cách

c có 4 cách

=>CÓ 6*5*4*2=240 cách

TH2: \(\overline{ab\left\{0,1,2\right\}f}\)

0,1,2 có 3!=6 cách

a có 5 cách

b có 4 cách

f có 3 cách

=>Có 360 cách

TH3: \(\overline{a\left\{0,1,2\right\}ef}\)

0,1,2 có 3!=6 cách

f có 2 cách

e có 5 cách

a có 4 cách

=>Có 6*3*5*4=360 cách

TH4: \(\overline{\left\{0,1,2\right\}def}\)

{0;1;2} có 4 cách

f có 3 cách

d có 5 cách

e có 4 cách

=>Có 4*3*5*4=240 cách

=>Có 120+120+360+360+240=1200 cách

7 tháng 5 2023

TH1 (012)def : chọn a từ (1,2) có 2 cách

chọn b từ (012)/(a) có 2 cách

chọn c từ (012)/(ab) có 1 cách

chọn f chẵn từ (4,6) có 2 cách

với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách

vậy có  2.2.1.4A2.2 số

TH2 a(012)ef 

xếp chỗ cho 3 số (012) có 3! cách

chọn f từ (4,6) có 2 cách 

chọn ae từ 4 số còn lại và xếp có 4A2 cách

 vậy có 3!.2.4A2 số 

TH3  ab(012)f

tương tự TH2

TH4 : abc(012):

chọn f chẵn từ (0,2)  có 2 cách

chọn e từ (012)/(a) có 2 cách

chọn d từ (012)/(ab) có 1 cách

với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách

vậy có 2.2.1.5A3 số 

tổng 4 TH ta có 

2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số