Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

trog Sách chuyên đề lớp 6 nhé bn , bài này giải ra dài lắm

Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

\(\frac{2n^2+1}{3}\in Z\Rightarrow2n^2+1\text{ chia hết cho }3\Rightarrow2n^2\text{ chia 3 dư 2}\)
\(\Rightarrow n^2\text{ chia 3 dư 1}\Rightarrow n\text{ chia 3 dư 1}\)
\(\Rightarrow n\text{ không chia hết cho 3 }\Rightarrow\frac{n}{3}\text{ tối giản}\)
\(n\text{ chia 3 dư 1 }\Rightarrow2n\text{ chia 3 dư 2}\Rightarrow2n+3\text{ chia 3 dư 2}\)
\(\Rightarrow2n+3\text{ không chia hết cho 3}\Rightarrow2n+3\text{ không chia hết cho 6}\)
\(\Rightarrow\frac{2n+3}{6}\text{ tối giản}\)

\(a)\) Ta có :
\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)
Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)
\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(2n+4\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(\frac{-3}{2}\) | \(\frac{-5}{2}\) | \(-1\) | \(-3\) | \(\frac{-1}{2}\) | \(\frac{-7}{2}\) | \(1\) | \(-5\) |
Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)
Vậy \(n\in\left\{-5;-3;-1;1\right\}\)
Chúc bạn học tốt ~
b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản

a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c