
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2 :
Ta có:
A) | 2 + 3x | = | 4x - 3 |
<=> 2 + 3x = 4x - 3
<=> 3x - 4x = -3 - 2
=> -x = -5
=> x= 5

b: \(7\cdot2^{13}< 8\cdot2^{13}=2^{16}\)
d: \(3^{99}=\left(3^{33}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
mà \(3^{33}>11^7\)
nên \(3^{99}>11^{21}\)

Tìm số nguyên x, biết:
1) -16 + 23 + x = - 16
7+x=-16
x=-16-7
x=-23
2) 2x – 35 = 15
2x=15+35
2x=50
x=50:2
x=25
3) 3x + 17 = 12
3x=12-17
3x=-5
x=-5/3
4) (2x – 5) + 17 = 6
2x-5=6-17
2x-5=-11
2x=-11+5
2x=-6
x=-6:2
x=-3
5) 10 – 2(4 – 3x) = -4
2(4-3x)=10-(-4)
2(4-3x)=14
4-3x=14:2
4-3x=7
3x=4-7
3x=-3
x=-3:3
x=-1
6) - 12 + 3(-x + 7) = -18
3(-x+7)=-18-(-12)
3(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9

\(B=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(B=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+3^{10}.2^{20}}\)
\(B=\frac{2^{19}.3^9+3^9.5.2^{18}}{2^{19}.3^9+3^{10}.2^{20}}\)
\(B=\frac{2^{18}.3^9.\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(B=\frac{7}{2.7}\)
\(B=\frac{1}{2}\)
\(C=\frac{2^{13}.4^{11}-16^9}{\left(3.2^{17}\right)^2}\)
\(C=\frac{2^{13}.2^{22}-2^{36}}{3^2.2^{34}}\)
\(C=\frac{2^{35}-2^{36}}{3^2.2^{34}}\)
\(C=\frac{2^{35}\left(1-2\right)}{3^2.2^{34}}\)
\(C=\frac{-2}{9}\)
\(D=\frac{4^7.2^8}{3.2^{15}.16^2-5.2^2.\left(2^{10}\right)^2}\)
\(D=\frac{2^{14}.2^8}{3.2^{15}.2^8-5.2^2.2^{20}}\)
\(D=\frac{2^{14}.2^8}{3.2^{23}-5.2^{22}}\)
\(D=\frac{2^{22}}{2^{22}\left(3.2-5\right)}\)
\(D=1\)

a) 10-x-5=-5-7-11
=> 5 - x = -23
=> x = 28
b) |x| -3=0
=> |x| = 3
=> x = 3 hoặc x -3
c) ( 7-|x| ) .(2x-4)=0
=> 7 - |x| = 0 hoặc 2x - 4 = 0
=> |x| = 7 hoặc 2x = 4
=> x = 7 hoặc x = - 7 hoặc x = 2
c)2+3x=-15-19
=> 2 + 3x = -34
=> 3x = 36
=> x = 12

a, A = \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
\(A=\frac{2^{10}\left(13+65\right)}{2^8.2^2.26}=\frac{2^{10}.78}{2^{10}.26}=\frac{78}{26}=3\)
Vậy A = 3
b, \(B=\frac{72^3.54^2}{108^4}=\frac{72^3.54^2}{\left(54.2\right)^4}=\frac{72^3.54^2}{54^4.2^4}=\frac{72^3}{54^2.2^4}=\frac{\left(8.9\right)^3}{\left(6.9\right)^2.2^4}\)
\(=\frac{\left(2^3\right)^3.9^3}{6^2.9^2.2^4}=\frac{2^9.9^3}{2^2.3^2.9^2.2^4}=\frac{2^9.9^3}{2^6.9^3}=\frac{2^9}{2^6}=2^3=8\)
Vậy B = 8
c, \(C=\frac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}=\frac{11.3^{29}.3^{30}}{2^2.3^{28}}=\frac{11.3^{29}.3.3^{29}}{2^2.3^{28}}=\frac{\left(11-3\right)3^{29}}{2^2.3^{28}}\)
\(=\frac{2^3.3^{29}}{2^2.3^{28}}=2.3=6\)
Vậy C = 6
d, \(D=\frac{\left(3.4.2^{16}\right)^2}{11.2^{13}.4^{11}-16^9}=\frac{\left(3.2^{18}\right)^2}{11.2^{35}-\left(2^4\right)^9}=\frac{3^2.2^{36}}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{\left(11-2\right)2^{35}}=\frac{3^2.2}{9}=2\)
Vậy D = 2

a, Ta có : \(10^{15}\cdot11=10^{15}\left(10+1\right)=10^{16}+10^{15}\)
Vì \(10^{16}+10^{15}>10^{16}+10\)
\(\Rightarrow\dfrac{10^{16}+10^{15}}{10^{16}+1}>\dfrac{10^{16}+10}{10^{16}+1}\)
Hay A>B
b, Ta có : \(C=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}}{10^{10}-1}+\dfrac{1}{10^{10}-1}\)
\(D=\dfrac{10^{10}-1}{10^{13}-3}=\dfrac{10^{10}}{10^{13}-3}+\dfrac{-1}{10^{13}-3}\)
Vì \(\dfrac{10^{10}}{10^{10}-1}>\dfrac{10^{10}}{10^{13}-3};\dfrac{1}{10^{10}-1}>\dfrac{-1}{10^{13}-3}\)
\(\Rightarrow\dfrac{10^{10}+1}{10^{10}-1}>\dfrac{10^{10}-1}{10^{13}-3}\)
Hay C > D

C = \(\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}\)
C = \(\dfrac{\dfrac{6-45-216}{54}}{\dfrac{21-1-360}{36}}\)
C = \(\dfrac{\dfrac{-85}{18}}{-\dfrac{85}{9}}\)
C = \(\dfrac{1}{2}\)
\(\left(3x-\dfrac{2}{3}\right)\cdot\dfrac{15}{16}=-10\\3x-\dfrac{2}{3}=-\dfrac{32}{3}\\ 3x=-10\\ x=-\dfrac{10}{3}\)