Cho tam giác ABC cân tại A, M là trung điểm của BC. trên cạnh AC lấy điểm D, trên...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: BD cắt CE tại I

Ta có: AD+DC=AC

AE+EB=AB

mà AD=AE và AC=AB

nên DC=EB

Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>IB=IC

=>I nằm trên đường trung trực của BC(1)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

23 tháng 12 2023

Xét ΔBAM vuông tại A và ΔBDM vuông tại D có

BM chung

BA=BD

Do đó: ΔBAM=ΔBDM

=>MA=MD

Xét ΔMAN vuông tại A và ΔMDC vuông tại D có

MA=MD

\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)

Do đó: ΔMAN=ΔMDC

=>AN=DC và MN=MC

Ta có: BA+AN=BN

BD+DC=BC

mà BA=BD và AN=DC

nên BN=BC

=>B nằm trên đường trung trực của NC(1)

ta có: MN=MC

=>M nằm trên đường trung trực của NC(2)

Ta có: IN=IC

=>I nằm trên đường trung trực của NC(3)

từ (1),(2),(3) suy ra B,M,I thẳng hàng

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC